{"title":"捕鱼优化算法:解决聚类问题的新型人类行为算法","authors":"Heming Jia, Qixian Wen, Yuhao Wang, Seyedali Mirjalili","doi":"10.1007/s10586-024-04618-w","DOIUrl":null,"url":null,"abstract":"<p>This paper is inspired by traditional rural fishing methods and proposes a new metaheuristic optimization algorithm based on human behavior: Catch Fish Optimization Algorithm (CFOA). This algorithm simulates the process of rural fishermen fishing in ponds, which is mainly divided into two phases: the exploration phase and the exploitation phase. In the exploration phase, there are two stages to search: first, the individual capture stage based on personal experience and intuition, and second, the group capture stage based on human proficiency in using tools and collaboration. Transition from independent search to group capture during the exploration phase. Exploitation phase: All fishermen will surround the shoal of fish and work together to salvage the remaining fish, a collective capture strategy. CFOA model is based on these two phases. This paper tested the optimization performance of CFOA using IEEE CEC 2014 and IEEE CEC 2020 test functions, and compared it with 11 other optimization algorithms. We employed the IEEE CEC2017 function to evaluate the overall performance of CFOA. The experimental results indicate that CFOA exhibits excellent and stable optimization capabilities overall. Additionally, we applied CFOA to data clustering problems, and the final results demonstrate that CFOA’s overall error rate in processing clustering problems is less than 20%, resulting in a better clustering effect. The comprehensive experimental results show that CFOA exhibits excellent optimization effects when facing different optimization problems. CFOA code is open at https://github.com/Meky-1210/CFOA.git.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catch fish optimization algorithm: a new human behavior algorithm for solving clustering problems\",\"authors\":\"Heming Jia, Qixian Wen, Yuhao Wang, Seyedali Mirjalili\",\"doi\":\"10.1007/s10586-024-04618-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is inspired by traditional rural fishing methods and proposes a new metaheuristic optimization algorithm based on human behavior: Catch Fish Optimization Algorithm (CFOA). This algorithm simulates the process of rural fishermen fishing in ponds, which is mainly divided into two phases: the exploration phase and the exploitation phase. In the exploration phase, there are two stages to search: first, the individual capture stage based on personal experience and intuition, and second, the group capture stage based on human proficiency in using tools and collaboration. Transition from independent search to group capture during the exploration phase. Exploitation phase: All fishermen will surround the shoal of fish and work together to salvage the remaining fish, a collective capture strategy. CFOA model is based on these two phases. This paper tested the optimization performance of CFOA using IEEE CEC 2014 and IEEE CEC 2020 test functions, and compared it with 11 other optimization algorithms. We employed the IEEE CEC2017 function to evaluate the overall performance of CFOA. The experimental results indicate that CFOA exhibits excellent and stable optimization capabilities overall. Additionally, we applied CFOA to data clustering problems, and the final results demonstrate that CFOA’s overall error rate in processing clustering problems is less than 20%, resulting in a better clustering effect. The comprehensive experimental results show that CFOA exhibits excellent optimization effects when facing different optimization problems. CFOA code is open at https://github.com/Meky-1210/CFOA.git.</p>\",\"PeriodicalId\":501576,\"journal\":{\"name\":\"Cluster Computing\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10586-024-04618-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04618-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Catch fish optimization algorithm: a new human behavior algorithm for solving clustering problems
This paper is inspired by traditional rural fishing methods and proposes a new metaheuristic optimization algorithm based on human behavior: Catch Fish Optimization Algorithm (CFOA). This algorithm simulates the process of rural fishermen fishing in ponds, which is mainly divided into two phases: the exploration phase and the exploitation phase. In the exploration phase, there are two stages to search: first, the individual capture stage based on personal experience and intuition, and second, the group capture stage based on human proficiency in using tools and collaboration. Transition from independent search to group capture during the exploration phase. Exploitation phase: All fishermen will surround the shoal of fish and work together to salvage the remaining fish, a collective capture strategy. CFOA model is based on these two phases. This paper tested the optimization performance of CFOA using IEEE CEC 2014 and IEEE CEC 2020 test functions, and compared it with 11 other optimization algorithms. We employed the IEEE CEC2017 function to evaluate the overall performance of CFOA. The experimental results indicate that CFOA exhibits excellent and stable optimization capabilities overall. Additionally, we applied CFOA to data clustering problems, and the final results demonstrate that CFOA’s overall error rate in processing clustering problems is less than 20%, resulting in a better clustering effect. The comprehensive experimental results show that CFOA exhibits excellent optimization effects when facing different optimization problems. CFOA code is open at https://github.com/Meky-1210/CFOA.git.