利用 bigraphical 反应系统对软件进化进行建模和验证

Nisha Pal, Dharmendra Kumar Yadav
{"title":"利用 bigraphical 反应系统对软件进化进行建模和验证","authors":"Nisha Pal, Dharmendra Kumar Yadav","doi":"10.1007/s10586-024-04597-y","DOIUrl":null,"url":null,"abstract":"<p>Changes are inevitable in software due to technology advancements, and changes in business requirements. Making changes in the software by insertion, deletion or modification of new code may lead to malfunctioning of the old code. Hence, there is a need for a priori analysis to ensure and capture these types of changes to run the software smoothly. Making changes in the software while it is in use is called dynamic evolution. Due to the lack of formal modeling and verification, this dynamic evolution process of software systems has not become prominent. Hence, we used the bigraphical reactive system (BRS) technique to ensure that changes do not break the software functionality (adversely affect the system). BRS provides a powerful framework for modeling, analyzing, and verifying the dynamic evolution of software systems, resulting in ensuring the reliability and correctness of evolving software system. In this paper, we proposed a formal method technique for modeling and verifying the dynamic evolution process (changing user requirements at run time) using the BRS. We used a bigraph to model software architectures and described the evolution rules for supporting the dynamic changes of the software system. Finally, we have used the BigMC model checker tool to validate this model with its properties and provide associated verification procedures.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and verification of software evolution using bigraphical reactive system\",\"authors\":\"Nisha Pal, Dharmendra Kumar Yadav\",\"doi\":\"10.1007/s10586-024-04597-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Changes are inevitable in software due to technology advancements, and changes in business requirements. Making changes in the software by insertion, deletion or modification of new code may lead to malfunctioning of the old code. Hence, there is a need for a priori analysis to ensure and capture these types of changes to run the software smoothly. Making changes in the software while it is in use is called dynamic evolution. Due to the lack of formal modeling and verification, this dynamic evolution process of software systems has not become prominent. Hence, we used the bigraphical reactive system (BRS) technique to ensure that changes do not break the software functionality (adversely affect the system). BRS provides a powerful framework for modeling, analyzing, and verifying the dynamic evolution of software systems, resulting in ensuring the reliability and correctness of evolving software system. In this paper, we proposed a formal method technique for modeling and verifying the dynamic evolution process (changing user requirements at run time) using the BRS. We used a bigraph to model software architectures and described the evolution rules for supporting the dynamic changes of the software system. Finally, we have used the BigMC model checker tool to validate this model with its properties and provide associated verification procedures.</p>\",\"PeriodicalId\":501576,\"journal\":{\"name\":\"Cluster Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10586-024-04597-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04597-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于技术的进步和业务需求的变化,软件的更改是不可避免的。通过插入、删除或修改新代码来更改软件,可能会导致旧代码出现故障。因此,有必要进行先验分析,以确保和捕捉这些类型的变更,从而顺利运行软件。在软件使用过程中对其进行更改被称为动态演进。由于缺乏正式的建模和验证,软件系统的这种动态演化过程并不突出。因此,我们使用大图形反应系统(BRS)技术来确保变更不会破坏软件功能(对系统产生不利影响)。BRS为软件系统的动态演化建模、分析和验证提供了一个强大的框架,从而确保了演化软件系统的可靠性和正确性。在本文中,我们提出了一种使用 BRS 对动态演化过程(在运行时改变用户需求)进行建模和验证的形式化方法技术。我们使用 bigraph 对软件架构进行建模,并描述了支持软件系统动态变化的进化规则。最后,我们使用 BigMC 模型检查工具验证了该模型的属性,并提供了相关的验证程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling and verification of software evolution using bigraphical reactive system

Changes are inevitable in software due to technology advancements, and changes in business requirements. Making changes in the software by insertion, deletion or modification of new code may lead to malfunctioning of the old code. Hence, there is a need for a priori analysis to ensure and capture these types of changes to run the software smoothly. Making changes in the software while it is in use is called dynamic evolution. Due to the lack of formal modeling and verification, this dynamic evolution process of software systems has not become prominent. Hence, we used the bigraphical reactive system (BRS) technique to ensure that changes do not break the software functionality (adversely affect the system). BRS provides a powerful framework for modeling, analyzing, and verifying the dynamic evolution of software systems, resulting in ensuring the reliability and correctness of evolving software system. In this paper, we proposed a formal method technique for modeling and verifying the dynamic evolution process (changing user requirements at run time) using the BRS. We used a bigraph to model software architectures and described the evolution rules for supporting the dynamic changes of the software system. Finally, we have used the BigMC model checker tool to validate this model with its properties and provide associated verification procedures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantitative and qualitative similarity measure for data clustering analysis OntoXAI: a semantic web rule language approach for explainable artificial intelligence Multi-threshold image segmentation using a boosted whale optimization: case study of breast invasive ductal carcinomas PSO-ACO-based bi-phase lightweight intrusion detection system combined with GA optimized ensemble classifiers A scalable and power efficient MAC protocol with adaptive TDMA for M2M communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1