Alparslan Fişne, M. Mücahit Enes Yurtsever, Süleyman Eken
{"title":"采用节能优化模型的节能建筑:热桥检测案例研究","authors":"Alparslan Fişne, M. Mücahit Enes Yurtsever, Süleyman Eken","doi":"10.1007/s10586-024-04624-y","DOIUrl":null,"url":null,"abstract":"<p>Thermographic inspection is particularly effective in identifying thermal bridges because it visualizes temperature differences on the building’s surface. The focus of this work is on energy-efficient computing for deep learning-based thermal bridge (anomaly) detection models. In this study, we concentrate on object detection-based models such as Mask R-CNN_FPN_50, Swin-T Transformer, and FSAF. We do benchmark tests on TBRR dataset with varying input sizes. To overcome the energy-efficient design, we apply optimizations such as compression, latency reduction, and pruning to these models. After our proposed improvements, the inference of the anomaly detection model, Mask R-CNN_FPN_50 with compression technique, is approximately 7.5% faster than the original. Also, more acceleration is observed in all models with increasing input size. Another criterion we focus on is total energy gain for optimized models. Swin-T transformer has the most inference energy gains for all input sizes (<span>\\(\\approx\\)</span>27 J for 3000 x 4000 and <span>\\(\\approx\\)</span>14 J for 2400 x 3400). In conclusion, our study presents an optimization of size, weight, and power for vision-based anomaly detection for buildings.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy-efficient buildings with energy-efficient optimized models: a case study on thermal bridge detection\",\"authors\":\"Alparslan Fişne, M. Mücahit Enes Yurtsever, Süleyman Eken\",\"doi\":\"10.1007/s10586-024-04624-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thermographic inspection is particularly effective in identifying thermal bridges because it visualizes temperature differences on the building’s surface. The focus of this work is on energy-efficient computing for deep learning-based thermal bridge (anomaly) detection models. In this study, we concentrate on object detection-based models such as Mask R-CNN_FPN_50, Swin-T Transformer, and FSAF. We do benchmark tests on TBRR dataset with varying input sizes. To overcome the energy-efficient design, we apply optimizations such as compression, latency reduction, and pruning to these models. After our proposed improvements, the inference of the anomaly detection model, Mask R-CNN_FPN_50 with compression technique, is approximately 7.5% faster than the original. Also, more acceleration is observed in all models with increasing input size. Another criterion we focus on is total energy gain for optimized models. Swin-T transformer has the most inference energy gains for all input sizes (<span>\\\\(\\\\approx\\\\)</span>27 J for 3000 x 4000 and <span>\\\\(\\\\approx\\\\)</span>14 J for 2400 x 3400). In conclusion, our study presents an optimization of size, weight, and power for vision-based anomaly detection for buildings.</p>\",\"PeriodicalId\":501576,\"journal\":{\"name\":\"Cluster Computing\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10586-024-04624-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04624-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy-efficient buildings with energy-efficient optimized models: a case study on thermal bridge detection
Thermographic inspection is particularly effective in identifying thermal bridges because it visualizes temperature differences on the building’s surface. The focus of this work is on energy-efficient computing for deep learning-based thermal bridge (anomaly) detection models. In this study, we concentrate on object detection-based models such as Mask R-CNN_FPN_50, Swin-T Transformer, and FSAF. We do benchmark tests on TBRR dataset with varying input sizes. To overcome the energy-efficient design, we apply optimizations such as compression, latency reduction, and pruning to these models. After our proposed improvements, the inference of the anomaly detection model, Mask R-CNN_FPN_50 with compression technique, is approximately 7.5% faster than the original. Also, more acceleration is observed in all models with increasing input size. Another criterion we focus on is total energy gain for optimized models. Swin-T transformer has the most inference energy gains for all input sizes (\(\approx\)27 J for 3000 x 4000 and \(\approx\)14 J for 2400 x 3400). In conclusion, our study presents an optimization of size, weight, and power for vision-based anomaly detection for buildings.