{"title":"SCRUB:云数据中心中的新型节能虚拟机选择和迁移方案","authors":"Mohammad Yekta, Hadi Shahriar Shahhoseini","doi":"10.1007/s10586-024-04551-y","DOIUrl":null,"url":null,"abstract":"<p>The extensive deployment of large cloud data centers has led to substantial energy consumption. Energy conservation is a critical concern for cloud service providers seeking to lower their operating costs within their data centers. To address this energy consumption challenge, effective approaches such as VM consolidation and VM migration are essential. These approaches must carefully balance the trade-off between energy consumption and Service Level Agreement Violations (SLAV). In this paper, we propose an energy-efficient VM selection algorithm for VM consolidation and call it the Simultaneous CPU–Ram Utilization Balancer (SCRUB) policy. This algorithm takes into account CPU and RAM utilization while trying to maintain a balance between energy consumption and SLAV. To evaluate the performance of our proposed method, we implemented it using the Cloudsim simulation toolkit and conducted simulations using real-world workload traces from PlanetLab and Google over three different days. The results show that the SCRUB VM selection policy has led to improvements in various metrics, including reduced energy consumption and a decreased number of VM migrations compared to existing VM selection policies. Specifically, it achieved a 16.98% decrease in energy consumption and a 46.42% reduction in the number of migrations for the PlanetLab dataset, and a 10.95% decrease in energy consumption and a 43.96% decline in the number of migrations for the Google dataset compared to the baseline algorithm MMT.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SCRUB: a novel energy-efficient virtual machines selection and migration scheme in cloud data centers\",\"authors\":\"Mohammad Yekta, Hadi Shahriar Shahhoseini\",\"doi\":\"10.1007/s10586-024-04551-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The extensive deployment of large cloud data centers has led to substantial energy consumption. Energy conservation is a critical concern for cloud service providers seeking to lower their operating costs within their data centers. To address this energy consumption challenge, effective approaches such as VM consolidation and VM migration are essential. These approaches must carefully balance the trade-off between energy consumption and Service Level Agreement Violations (SLAV). In this paper, we propose an energy-efficient VM selection algorithm for VM consolidation and call it the Simultaneous CPU–Ram Utilization Balancer (SCRUB) policy. This algorithm takes into account CPU and RAM utilization while trying to maintain a balance between energy consumption and SLAV. To evaluate the performance of our proposed method, we implemented it using the Cloudsim simulation toolkit and conducted simulations using real-world workload traces from PlanetLab and Google over three different days. The results show that the SCRUB VM selection policy has led to improvements in various metrics, including reduced energy consumption and a decreased number of VM migrations compared to existing VM selection policies. Specifically, it achieved a 16.98% decrease in energy consumption and a 46.42% reduction in the number of migrations for the PlanetLab dataset, and a 10.95% decrease in energy consumption and a 43.96% decline in the number of migrations for the Google dataset compared to the baseline algorithm MMT.</p>\",\"PeriodicalId\":501576,\"journal\":{\"name\":\"Cluster Computing\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cluster Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10586-024-04551-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04551-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
大型云数据中心的广泛部署导致了大量能源消耗。对于希望降低数据中心运营成本的云服务提供商来说,节能是一个至关重要的问题。要应对这一能耗挑战,虚拟机整合和虚拟机迁移等有效方法至关重要。这些方法必须在能耗和违反服务级别协议(SLAV)之间谨慎权衡。在本文中,我们提出了一种用于虚拟机整合的高能效虚拟机选择算法,并将其称为 "CPU-内存同时利用平衡器(SCRUB)策略"。该算法考虑了 CPU 和 RAM 的利用率,同时努力保持能耗和 SLAV 之间的平衡。为了评估我们提出的方法的性能,我们使用 Cloudsim 仿真工具包实施了该方法,并使用 PlanetLab 和 Google 在三个不同日期的真实工作负载跟踪进行了仿真。结果表明,与现有的虚拟机选择策略相比,SCRUB 虚拟机选择策略改善了各种指标,包括降低能耗和减少虚拟机迁移次数。具体来说,与基准算法MMT相比,SCRUB在PlanetLab数据集上实现了16.98%的能耗降低和46.42%的迁移次数减少,在Google数据集上实现了10.95%的能耗降低和43.96%的迁移次数减少。
SCRUB: a novel energy-efficient virtual machines selection and migration scheme in cloud data centers
The extensive deployment of large cloud data centers has led to substantial energy consumption. Energy conservation is a critical concern for cloud service providers seeking to lower their operating costs within their data centers. To address this energy consumption challenge, effective approaches such as VM consolidation and VM migration are essential. These approaches must carefully balance the trade-off between energy consumption and Service Level Agreement Violations (SLAV). In this paper, we propose an energy-efficient VM selection algorithm for VM consolidation and call it the Simultaneous CPU–Ram Utilization Balancer (SCRUB) policy. This algorithm takes into account CPU and RAM utilization while trying to maintain a balance between energy consumption and SLAV. To evaluate the performance of our proposed method, we implemented it using the Cloudsim simulation toolkit and conducted simulations using real-world workload traces from PlanetLab and Google over three different days. The results show that the SCRUB VM selection policy has led to improvements in various metrics, including reduced energy consumption and a decreased number of VM migrations compared to existing VM selection policies. Specifically, it achieved a 16.98% decrease in energy consumption and a 46.42% reduction in the number of migrations for the PlanetLab dataset, and a 10.95% decrease in energy consumption and a 43.96% decline in the number of migrations for the Google dataset compared to the baseline algorithm MMT.