基于广义水平切片法的多层边坡稳定性和破坏模式上界极限分析

IF 4.1 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Journal of Earth Science Pub Date : 2024-06-25 DOI:10.1007/s12583-022-1626-0
Huawei Zhang, Changdong Li, Wenqiang Chen, Ni Xie, Guihua Wang, Wenmin Yao, Xihui Jiang, Jingjing Long
{"title":"基于广义水平切片法的多层边坡稳定性和破坏模式上界极限分析","authors":"Huawei Zhang, Changdong Li, Wenqiang Chen, Ni Xie, Guihua Wang, Wenmin Yao, Xihui Jiang, Jingjing Long","doi":"10.1007/s12583-022-1626-0","DOIUrl":null,"url":null,"abstract":"<p>Multi-layer slopes are widely found in clay residue receiving fields. A generalized horizontal slice method (GHSM) for assessing the stability of multi-layer slopes that considers the energy dissipation between adjacent horizontal slices is presented. In view of the upper-bound limit analysis theory, the energy equation is derived and the ultimate failure mode is generated by comparing the sliding surface passing through the slope toe (mode A) with that below (mode B). In addition, the influence of the number of slices on the stability coefficients in the GHSM is studied and the stable value is obtained. Compared to the original method (Chen’s method), the GHSM can acquire more precise results, which takes into account the energy dissipation in the inner sliding soil mass. Moreover, the GHSM, limit equilibrium method (LEM) and numerical simulation method (NSM) are applied to analyze the stability of a multi-layer slope with different slope angles and the results of the safety factor and failure mode are very close in each case. The ultimate failure modes are shown to be mode B when the slope angle is not more than 28°. It illustrates that the determination of the ultimate sliding surface requires comparison of multiple failure modes, not only mode A.</p>","PeriodicalId":15607,"journal":{"name":"Journal of Earth Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upper-Bound Limit Analysis of the Multi-Layer Slope Stability and Failure Mode Based on Generalized Horizontal Slice Method\",\"authors\":\"Huawei Zhang, Changdong Li, Wenqiang Chen, Ni Xie, Guihua Wang, Wenmin Yao, Xihui Jiang, Jingjing Long\",\"doi\":\"10.1007/s12583-022-1626-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multi-layer slopes are widely found in clay residue receiving fields. A generalized horizontal slice method (GHSM) for assessing the stability of multi-layer slopes that considers the energy dissipation between adjacent horizontal slices is presented. In view of the upper-bound limit analysis theory, the energy equation is derived and the ultimate failure mode is generated by comparing the sliding surface passing through the slope toe (mode A) with that below (mode B). In addition, the influence of the number of slices on the stability coefficients in the GHSM is studied and the stable value is obtained. Compared to the original method (Chen’s method), the GHSM can acquire more precise results, which takes into account the energy dissipation in the inner sliding soil mass. Moreover, the GHSM, limit equilibrium method (LEM) and numerical simulation method (NSM) are applied to analyze the stability of a multi-layer slope with different slope angles and the results of the safety factor and failure mode are very close in each case. The ultimate failure modes are shown to be mode B when the slope angle is not more than 28°. It illustrates that the determination of the ultimate sliding surface requires comparison of multiple failure modes, not only mode A.</p>\",\"PeriodicalId\":15607,\"journal\":{\"name\":\"Journal of Earth Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12583-022-1626-0\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12583-022-1626-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多层斜坡广泛存在于粘土残积物受纳场中。本文提出了一种用于评估多层斜坡稳定性的广义水平切片法(GHSM),该方法考虑了相邻水平切片之间的能量耗散。根据上限极限分析理论,推导出了能量方程,并通过比较通过坡脚的滑动面(模式 A)和下方的滑动面(模式 B),得出了最终破坏模式。此外,还研究了切片数对 GHSM 中稳定系数的影响,并得到了稳定值。与原始方法(陈氏方法)相比,GHSM 考虑了滑动土体内部的能量耗散,能获得更精确的结果。此外,应用 GHSM、极限平衡法(LEM)和数值模拟法(NSM)分析了不同坡角的多层斜坡的稳定性,在每种情况下安全系数和破坏模式的结果都非常接近。当坡度角不大于 28°时,最终破坏模式为模式 B。这说明确定极限滑动面需要比较多种破坏模式,而不仅仅是模式 A。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Upper-Bound Limit Analysis of the Multi-Layer Slope Stability and Failure Mode Based on Generalized Horizontal Slice Method

Multi-layer slopes are widely found in clay residue receiving fields. A generalized horizontal slice method (GHSM) for assessing the stability of multi-layer slopes that considers the energy dissipation between adjacent horizontal slices is presented. In view of the upper-bound limit analysis theory, the energy equation is derived and the ultimate failure mode is generated by comparing the sliding surface passing through the slope toe (mode A) with that below (mode B). In addition, the influence of the number of slices on the stability coefficients in the GHSM is studied and the stable value is obtained. Compared to the original method (Chen’s method), the GHSM can acquire more precise results, which takes into account the energy dissipation in the inner sliding soil mass. Moreover, the GHSM, limit equilibrium method (LEM) and numerical simulation method (NSM) are applied to analyze the stability of a multi-layer slope with different slope angles and the results of the safety factor and failure mode are very close in each case. The ultimate failure modes are shown to be mode B when the slope angle is not more than 28°. It illustrates that the determination of the ultimate sliding surface requires comparison of multiple failure modes, not only mode A.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Earth Science
Journal of Earth Science 地学-地球科学综合
CiteScore
5.50
自引率
12.10%
发文量
128
审稿时长
4.5 months
期刊介绍: Journal of Earth Science (previously known as Journal of China University of Geosciences), issued bimonthly through China University of Geosciences, covers all branches of geology and related technology in the exploration and utilization of earth resources. Founded in 1990 as the Journal of China University of Geosciences, this publication is expanding its breadth of coverage to an international scope. Coverage includes such topics as geology, petrology, mineralogy, ore deposit geology, tectonics, paleontology, stratigraphy, sedimentology, geochemistry, geophysics and environmental sciences. Articles published in recent issues include Tectonics in the Northwestern West Philippine Basin; Creep Damage Characteristics of Soft Rock under Disturbance Loads; Simplicial Indicator Kriging; Tephra Discovered in High Resolution Peat Sediment and Its Indication to Climatic Event. The journal offers discussion of new theories, methods and discoveries; reports on recent achievements in the geosciences; and timely reviews of selected subjects.
期刊最新文献
Quaternary Activity Characteristics and Regional Tectonic Significance of the Jiulong Fault in Jiujiang, Jiangxi Province, China Application of Detrital Apatite U-Pb Geochronology and Trace Elements for Provenance Analysis, Insights from a Study on the Yarlung River Sand Microstructures, Deformation Mechanisms and Seismic Properties of Synkinematic Migmatite from Southeastern Tibet: Insights from the Migmatitic Core of the Ailao Shan-Red River Shear Zone, Western Yunnan, China Paleozoic Multi-Stage Magmatic Events Related to Proto-Tethys and Paleo-Tethys Evolution: Insights from Intrusive Rocks in the Eastern Altyn Orogen, NW China Tracing Sources of Geochemical Anomalies in a Deeply Buried Volcanic-Related Hydrothermal Uranium Deposit: the Daguanchang Deposit, Northern Hebei Province, North China Craton
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1