E Maskar, A Fakhim Lamrani, R Zosiamliana and D P Rai
{"title":"通过 DFT 深入了解 RuO2 的电子、热力学和热电特性","authors":"E Maskar, A Fakhim Lamrani, R Zosiamliana and D P Rai","doi":"10.1088/2516-1075/ad5b33","DOIUrl":null,"url":null,"abstract":"In this study, we explore the structural, electronic, thermodynamic, and thermoelectric properties of RuO2 using density functional theory. The derived equilibrium structural parameters agree with other theoretical and experimental results. The widely used modified Becke–Johnson (mBJ-GGA) potential is adopted for accurate electronic band gap estimation. To incorporate the effect of the extended orbital of the Ru atom, spin-orbit coupling has been used in combination with the mBJ potential. The investigation of electronic properties revealed an indirect semi-conducting nature with a band gap along the W-L symmetry. The calculated band gaps are 1.685 and 1.658 eV from mBJ and mBJ + SOC, respectively. The dynamical stability is tested and verified by calculating the phonon dispersion curve. We have employed the quasiharmonic approximation-based Gibbs2 package to determine the pressure and temperature-dependent thermodynamical parameters, such as cell volume, Debye temperature, heat capacity, entropy, and thermal expansion coefficient. This study uses the BoltzTraP simulation algorithm to determine the thermoelectric parameters such as the Seebeck coefficient, electrical conductivity, and thermal conductivity.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":"65 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DFT insight of the electronic, thermodynamic, and thermoelectric properties of RuO2\",\"authors\":\"E Maskar, A Fakhim Lamrani, R Zosiamliana and D P Rai\",\"doi\":\"10.1088/2516-1075/ad5b33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we explore the structural, electronic, thermodynamic, and thermoelectric properties of RuO2 using density functional theory. The derived equilibrium structural parameters agree with other theoretical and experimental results. The widely used modified Becke–Johnson (mBJ-GGA) potential is adopted for accurate electronic band gap estimation. To incorporate the effect of the extended orbital of the Ru atom, spin-orbit coupling has been used in combination with the mBJ potential. The investigation of electronic properties revealed an indirect semi-conducting nature with a band gap along the W-L symmetry. The calculated band gaps are 1.685 and 1.658 eV from mBJ and mBJ + SOC, respectively. The dynamical stability is tested and verified by calculating the phonon dispersion curve. We have employed the quasiharmonic approximation-based Gibbs2 package to determine the pressure and temperature-dependent thermodynamical parameters, such as cell volume, Debye temperature, heat capacity, entropy, and thermal expansion coefficient. This study uses the BoltzTraP simulation algorithm to determine the thermoelectric parameters such as the Seebeck coefficient, electrical conductivity, and thermal conductivity.\",\"PeriodicalId\":42419,\"journal\":{\"name\":\"Electronic Structure\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Structure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1075/ad5b33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/ad5b33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A DFT insight of the electronic, thermodynamic, and thermoelectric properties of RuO2
In this study, we explore the structural, electronic, thermodynamic, and thermoelectric properties of RuO2 using density functional theory. The derived equilibrium structural parameters agree with other theoretical and experimental results. The widely used modified Becke–Johnson (mBJ-GGA) potential is adopted for accurate electronic band gap estimation. To incorporate the effect of the extended orbital of the Ru atom, spin-orbit coupling has been used in combination with the mBJ potential. The investigation of electronic properties revealed an indirect semi-conducting nature with a band gap along the W-L symmetry. The calculated band gaps are 1.685 and 1.658 eV from mBJ and mBJ + SOC, respectively. The dynamical stability is tested and verified by calculating the phonon dispersion curve. We have employed the quasiharmonic approximation-based Gibbs2 package to determine the pressure and temperature-dependent thermodynamical parameters, such as cell volume, Debye temperature, heat capacity, entropy, and thermal expansion coefficient. This study uses the BoltzTraP simulation algorithm to determine the thermoelectric parameters such as the Seebeck coefficient, electrical conductivity, and thermal conductivity.