锰铁氧体纳米粒子的磁性面效应

IF 6.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Today Chemistry Pub Date : 2024-06-25 DOI:10.1016/j.mtchem.2024.102168
Ahmed Essyed, Mohamed Alae Ait Kerroum, Sylvain Bertaina, Wafaa Azouzi, Ahmed Al Shami, Ismail Benabdallah, Hicham Labrim, Dris Ihiawakrim, Rachid Baati, Mohammed Benaissa
{"title":"锰铁氧体纳米粒子的磁性面效应","authors":"Ahmed Essyed, Mohamed Alae Ait Kerroum, Sylvain Bertaina, Wafaa Azouzi, Ahmed Al Shami, Ismail Benabdallah, Hicham Labrim, Dris Ihiawakrim, Rachid Baati, Mohammed Benaissa","doi":"10.1016/j.mtchem.2024.102168","DOIUrl":null,"url":null,"abstract":"Manganese ferrite (MnFe2O4) stands out among multifunctional spinel ferrites for its attractive magnetic properties, high chemical stability and excellent biocompatibility, which are essential prerequisites for effective performance in various applications, including biomedical. However, very little work has been carried out on the ideal reaction conditions to obtain nanoparticles with high performance in terms of magnetization correlated to facet engineering. This study reports the synthesis of MnFe2O4 nanoparticles by a thermal decomposition process, controlling the decomposition temperature and the ligand/precursor ratio. Indeed, with a decomposition temperature of manganese stearate maintained at 270 °C and a ligand/precursor ratio equal to 2, superparamagnetic behavior and significantly high saturation magnetization were obtained from monodisperse nanoparticles of cubic shape and approximately 7 nm in size. Combining magnetic measurements with Monte Carlo simulations demonstrated that this behavior is attributed to the shape anisotropy of cubic nanoparticles, which favors the orientation of the magnetic moment along planar facets with low surface anisotropy. The strong influence of this faceting on the nanomagnetism of ferrite based on MnFe2O4 should open new avenues for numerous applications, particularly in biomedical imaging.","PeriodicalId":18353,"journal":{"name":"Materials Today Chemistry","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Faceting effect on magnetism in manganese ferrites nanoparticles\",\"authors\":\"Ahmed Essyed, Mohamed Alae Ait Kerroum, Sylvain Bertaina, Wafaa Azouzi, Ahmed Al Shami, Ismail Benabdallah, Hicham Labrim, Dris Ihiawakrim, Rachid Baati, Mohammed Benaissa\",\"doi\":\"10.1016/j.mtchem.2024.102168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Manganese ferrite (MnFe2O4) stands out among multifunctional spinel ferrites for its attractive magnetic properties, high chemical stability and excellent biocompatibility, which are essential prerequisites for effective performance in various applications, including biomedical. However, very little work has been carried out on the ideal reaction conditions to obtain nanoparticles with high performance in terms of magnetization correlated to facet engineering. This study reports the synthesis of MnFe2O4 nanoparticles by a thermal decomposition process, controlling the decomposition temperature and the ligand/precursor ratio. Indeed, with a decomposition temperature of manganese stearate maintained at 270 °C and a ligand/precursor ratio equal to 2, superparamagnetic behavior and significantly high saturation magnetization were obtained from monodisperse nanoparticles of cubic shape and approximately 7 nm in size. Combining magnetic measurements with Monte Carlo simulations demonstrated that this behavior is attributed to the shape anisotropy of cubic nanoparticles, which favors the orientation of the magnetic moment along planar facets with low surface anisotropy. The strong influence of this faceting on the nanomagnetism of ferrite based on MnFe2O4 should open new avenues for numerous applications, particularly in biomedical imaging.\",\"PeriodicalId\":18353,\"journal\":{\"name\":\"Materials Today Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mtchem.2024.102168\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.mtchem.2024.102168","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锰铁氧体(MnFe2O4)因其极具吸引力的磁性、高度的化学稳定性和出色的生物相容性而在多功能尖晶石铁氧体中脱颖而出,这些都是在生物医学等各种应用中实现有效性能的必要前提。然而,对于如何在理想的反应条件下获得磁化与刻面工程相关的高性能纳米粒子,目前还鲜有研究。本研究报告了通过热分解工艺合成 MnFe2O4 纳米粒子的过程,并控制了分解温度和配体/前驱体的比例。事实上,硬脂酸锰的分解温度保持在 270 ℃,配体/前驱体的比例等于 2 时,立方体形状、大小约为 7 nm 的单分散纳米粒子就能获得超顺磁性和显著的高饱和磁化。磁性测量与蒙特卡罗模拟相结合证明,这种行为归因于立方纳米粒子的形状各向异性,它有利于磁矩沿表面各向异性较低的平面取向。这种刻面对基于 MnFe2O4 的铁氧体的纳米磁性的强大影响,将为众多应用,尤其是生物医学成像开辟新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Faceting effect on magnetism in manganese ferrites nanoparticles
Manganese ferrite (MnFe2O4) stands out among multifunctional spinel ferrites for its attractive magnetic properties, high chemical stability and excellent biocompatibility, which are essential prerequisites for effective performance in various applications, including biomedical. However, very little work has been carried out on the ideal reaction conditions to obtain nanoparticles with high performance in terms of magnetization correlated to facet engineering. This study reports the synthesis of MnFe2O4 nanoparticles by a thermal decomposition process, controlling the decomposition temperature and the ligand/precursor ratio. Indeed, with a decomposition temperature of manganese stearate maintained at 270 °C and a ligand/precursor ratio equal to 2, superparamagnetic behavior and significantly high saturation magnetization were obtained from monodisperse nanoparticles of cubic shape and approximately 7 nm in size. Combining magnetic measurements with Monte Carlo simulations demonstrated that this behavior is attributed to the shape anisotropy of cubic nanoparticles, which favors the orientation of the magnetic moment along planar facets with low surface anisotropy. The strong influence of this faceting on the nanomagnetism of ferrite based on MnFe2O4 should open new avenues for numerous applications, particularly in biomedical imaging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.90
自引率
6.80%
发文量
596
审稿时长
33 days
期刊介绍: Materials Today Chemistry is a multi-disciplinary journal dedicated to all facets of materials chemistry. This field represents one of the fastest-growing areas of science, involving the application of chemistry-based techniques to the study of materials. It encompasses materials synthesis and behavior, as well as the intricate relationships between material structure and properties at the atomic and molecular scale. Materials Today Chemistry serves as a high-impact platform for discussing research that propels the field forward through groundbreaking discoveries and innovative techniques.
期刊最新文献
Light-responsive biowaste-derived and bio-inspired textiles: Dancing between bio-friendliness and antibacterial functionality NiFe2O4 magnetic nanoparticles supported on MIL-101(Fe) as bimetallic adsorbent for boosted capture ability toward levofloxacin Recent advances in the preparation and application of graphene oxide smart response membranes The potential of collagen-based materials for wound management Development of Mg2TiO4:Mn4+ phosphors for enhanced red LED emission and forensic fingerprint analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1