Hossein Malekinejad, Amin Farrokhabadi, Gholam Hossein Rahimi, Ricardo Carbas, Eduardo AS Marques, Lucas da Silva
{"title":"表皮厚度对泡沫填充复合材料夹层结构失效机理的影响","authors":"Hossein Malekinejad, Amin Farrokhabadi, Gholam Hossein Rahimi, Ricardo Carbas, Eduardo AS Marques, Lucas da Silva","doi":"10.1177/00219983241265922","DOIUrl":null,"url":null,"abstract":"Sandwich structures are often prone to catastrophic failure due to premature separation between the core and skin layers. Geometric parameters, such as the thickness of the skin and core, along with the materials used in their manufacturing, directly influence the resistance to separation between the skin and core. This study explores how variations in skin thickness affect both failure modes and maximum load capacity in sandwich structures, utilizing both experimental testing and numerical simulations. Specimens were categorized as intact and pre-debonded samples. Each specimen featured four different skin thicknesses (3, 6, 8, and 10 layers of composite laminated skins, with corresponding thicknesses of 0.68, 1.33, 1.73, and 2.1 mm respectively). The specimens incorporated a foam-filled square corrugated core and underwent 3-point bending tests. Results revealed a significant shift in the failure mode: initially observed as upper skin fracture (V-shaped failure), it transitioned to separation between skins and cores with increased skin thickness, particularly in the presence of pre-debonding. Notably, the predominant failure mode did not involve separation between the skin and core in specimens without a pre-existing crack. Furthermore, numerical simulations effectively demonstrated the accurate capture of failure modes and loads using the Hashin and cohesive zone model (CZM).","PeriodicalId":15489,"journal":{"name":"Journal of Composite Materials","volume":"56 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skin thickness effects on failure mechanisms in foam infilled composite sandwich structures\",\"authors\":\"Hossein Malekinejad, Amin Farrokhabadi, Gholam Hossein Rahimi, Ricardo Carbas, Eduardo AS Marques, Lucas da Silva\",\"doi\":\"10.1177/00219983241265922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sandwich structures are often prone to catastrophic failure due to premature separation between the core and skin layers. Geometric parameters, such as the thickness of the skin and core, along with the materials used in their manufacturing, directly influence the resistance to separation between the skin and core. This study explores how variations in skin thickness affect both failure modes and maximum load capacity in sandwich structures, utilizing both experimental testing and numerical simulations. Specimens were categorized as intact and pre-debonded samples. Each specimen featured four different skin thicknesses (3, 6, 8, and 10 layers of composite laminated skins, with corresponding thicknesses of 0.68, 1.33, 1.73, and 2.1 mm respectively). The specimens incorporated a foam-filled square corrugated core and underwent 3-point bending tests. Results revealed a significant shift in the failure mode: initially observed as upper skin fracture (V-shaped failure), it transitioned to separation between skins and cores with increased skin thickness, particularly in the presence of pre-debonding. Notably, the predominant failure mode did not involve separation between the skin and core in specimens without a pre-existing crack. Furthermore, numerical simulations effectively demonstrated the accurate capture of failure modes and loads using the Hashin and cohesive zone model (CZM).\",\"PeriodicalId\":15489,\"journal\":{\"name\":\"Journal of Composite Materials\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/00219983241265922\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00219983241265922","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Skin thickness effects on failure mechanisms in foam infilled composite sandwich structures
Sandwich structures are often prone to catastrophic failure due to premature separation between the core and skin layers. Geometric parameters, such as the thickness of the skin and core, along with the materials used in their manufacturing, directly influence the resistance to separation between the skin and core. This study explores how variations in skin thickness affect both failure modes and maximum load capacity in sandwich structures, utilizing both experimental testing and numerical simulations. Specimens were categorized as intact and pre-debonded samples. Each specimen featured four different skin thicknesses (3, 6, 8, and 10 layers of composite laminated skins, with corresponding thicknesses of 0.68, 1.33, 1.73, and 2.1 mm respectively). The specimens incorporated a foam-filled square corrugated core and underwent 3-point bending tests. Results revealed a significant shift in the failure mode: initially observed as upper skin fracture (V-shaped failure), it transitioned to separation between skins and cores with increased skin thickness, particularly in the presence of pre-debonding. Notably, the predominant failure mode did not involve separation between the skin and core in specimens without a pre-existing crack. Furthermore, numerical simulations effectively demonstrated the accurate capture of failure modes and loads using the Hashin and cohesive zone model (CZM).
期刊介绍:
Consistently ranked in the top 10 of the Thomson Scientific JCR, the Journal of Composite Materials publishes peer reviewed, original research papers from internationally renowned composite materials specialists from industry, universities and research organizations, featuring new advances in materials, processing, design, analysis, testing, performance and applications. This journal is a member of the Committee on Publication Ethics (COPE).