高通量组合方法加速了无铅弛豫铁电系统的合成

IF 22.7 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Infomat Pub Date : 2024-06-12 DOI:10.1002/inf2.12561
Di Zhang, Katherine J. Harmon, Michael J. Zachman, Ping Lu, Doyun Kim, Zhan Zhang, Nicholas Cucciniello, Reid Markland, Ken William Ssennyimba, Hua Zhou, Yue Cao, Matthew Brahlek, Hao Zheng, Matthew M. Schneider, Alessandro R. Mazza, Zach Hughes, Chase Somodi, Benjamin Freiman, Sarah Pooley, Sundar Kunwar, Pinku Roy, Qing Tu, Rodney J. McCabe, Aiping Chen
{"title":"高通量组合方法加速了无铅弛豫铁电系统的合成","authors":"Di Zhang,&nbsp;Katherine J. Harmon,&nbsp;Michael J. Zachman,&nbsp;Ping Lu,&nbsp;Doyun Kim,&nbsp;Zhan Zhang,&nbsp;Nicholas Cucciniello,&nbsp;Reid Markland,&nbsp;Ken William Ssennyimba,&nbsp;Hua Zhou,&nbsp;Yue Cao,&nbsp;Matthew Brahlek,&nbsp;Hao Zheng,&nbsp;Matthew M. Schneider,&nbsp;Alessandro R. Mazza,&nbsp;Zach Hughes,&nbsp;Chase Somodi,&nbsp;Benjamin Freiman,&nbsp;Sarah Pooley,&nbsp;Sundar Kunwar,&nbsp;Pinku Roy,&nbsp;Qing Tu,&nbsp;Rodney J. McCabe,&nbsp;Aiping Chen","doi":"10.1002/inf2.12561","DOIUrl":null,"url":null,"abstract":"<p>Developing novel lead-free ferroelectric materials is crucial for next-generation microelectronic technologies that are energy efficient and environment friendly. However, materials discovery and property optimization are typically time-consuming due to the limited throughput of traditional synthesis methods. In this work, we use a high-throughput combinatorial synthesis approach to fabricate lead-free ferroelectric superlattices and solid solutions of (Ba<sub>0.7</sub>Ca<sub>0.3</sub>)TiO<sub>3</sub> (BCT) and Ba(Zr<sub>0.2</sub>Ti<sub>0.8</sub>)O<sub>3</sub> (BZT) phases with continuous variation of composition and layer thickness. High-resolution x-ray diffraction (XRD) and analytical scanning transmission electron microscopy (STEM) demonstrate high film quality and well-controlled compositional gradients. Ferroelectric and dielectric property measurements identify the “optimal property point” achieved at the composition of 48BZT–52BCT. Displacement vector maps reveal that ferroelectric domain sizes are tunable by varying {BCT–BZT}<sub><i>N</i></sub> superlattice geometry. This high-throughput synthesis approach can be applied to many other material systems to expedite new materials discovery and properties optimization, allowing for the exploration of a large area of phase space within a single growth.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":48538,"journal":{"name":"Infomat","volume":"6 9","pages":""},"PeriodicalIF":22.7000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12561","citationCount":"0","resultStr":"{\"title\":\"High-throughput combinatorial approach expedites the synthesis of a lead-free relaxor ferroelectric system\",\"authors\":\"Di Zhang,&nbsp;Katherine J. Harmon,&nbsp;Michael J. Zachman,&nbsp;Ping Lu,&nbsp;Doyun Kim,&nbsp;Zhan Zhang,&nbsp;Nicholas Cucciniello,&nbsp;Reid Markland,&nbsp;Ken William Ssennyimba,&nbsp;Hua Zhou,&nbsp;Yue Cao,&nbsp;Matthew Brahlek,&nbsp;Hao Zheng,&nbsp;Matthew M. Schneider,&nbsp;Alessandro R. Mazza,&nbsp;Zach Hughes,&nbsp;Chase Somodi,&nbsp;Benjamin Freiman,&nbsp;Sarah Pooley,&nbsp;Sundar Kunwar,&nbsp;Pinku Roy,&nbsp;Qing Tu,&nbsp;Rodney J. McCabe,&nbsp;Aiping Chen\",\"doi\":\"10.1002/inf2.12561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Developing novel lead-free ferroelectric materials is crucial for next-generation microelectronic technologies that are energy efficient and environment friendly. However, materials discovery and property optimization are typically time-consuming due to the limited throughput of traditional synthesis methods. In this work, we use a high-throughput combinatorial synthesis approach to fabricate lead-free ferroelectric superlattices and solid solutions of (Ba<sub>0.7</sub>Ca<sub>0.3</sub>)TiO<sub>3</sub> (BCT) and Ba(Zr<sub>0.2</sub>Ti<sub>0.8</sub>)O<sub>3</sub> (BZT) phases with continuous variation of composition and layer thickness. High-resolution x-ray diffraction (XRD) and analytical scanning transmission electron microscopy (STEM) demonstrate high film quality and well-controlled compositional gradients. Ferroelectric and dielectric property measurements identify the “optimal property point” achieved at the composition of 48BZT–52BCT. Displacement vector maps reveal that ferroelectric domain sizes are tunable by varying {BCT–BZT}<sub><i>N</i></sub> superlattice geometry. This high-throughput synthesis approach can be applied to many other material systems to expedite new materials discovery and properties optimization, allowing for the exploration of a large area of phase space within a single growth.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":48538,\"journal\":{\"name\":\"Infomat\",\"volume\":\"6 9\",\"pages\":\"\"},\"PeriodicalIF\":22.7000,\"publicationDate\":\"2024-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/inf2.12561\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infomat\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12561\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infomat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/inf2.12561","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发新型无铅铁电材料对于节能环保的下一代微电子技术至关重要。然而,由于传统合成方法的通量有限,材料发现和性能优化通常非常耗时。在这项工作中,我们采用高通量组合合成方法,制备了无铅铁电超晶格以及成分和层厚度连续变化的 (Ba0.7Ca0.3)TiO3 (BCT) 和 Ba(Zr0.2Ti0.8)O3 (BZT) 相固溶体。高分辨率 X 射线衍射 (XRD) 和分析扫描透射电子显微镜 (STEM) 证明了薄膜的高质量和良好的成分梯度。铁电和介电性质测量确定了在 48BZT-52BCT 成分下达到的 "最佳性质点"。位移矢量图显示,通过改变 {BCT-BZT}N 超晶格的几何形状,可以调整铁电畴的大小。这种高通量合成方法可应用于许多其他材料系统,以加快新材料的发现和性能优化,从而在一次生长过程中探索大面积的相空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-throughput combinatorial approach expedites the synthesis of a lead-free relaxor ferroelectric system

Developing novel lead-free ferroelectric materials is crucial for next-generation microelectronic technologies that are energy efficient and environment friendly. However, materials discovery and property optimization are typically time-consuming due to the limited throughput of traditional synthesis methods. In this work, we use a high-throughput combinatorial synthesis approach to fabricate lead-free ferroelectric superlattices and solid solutions of (Ba0.7Ca0.3)TiO3 (BCT) and Ba(Zr0.2Ti0.8)O3 (BZT) phases with continuous variation of composition and layer thickness. High-resolution x-ray diffraction (XRD) and analytical scanning transmission electron microscopy (STEM) demonstrate high film quality and well-controlled compositional gradients. Ferroelectric and dielectric property measurements identify the “optimal property point” achieved at the composition of 48BZT–52BCT. Displacement vector maps reveal that ferroelectric domain sizes are tunable by varying {BCT–BZT}N superlattice geometry. This high-throughput synthesis approach can be applied to many other material systems to expedite new materials discovery and properties optimization, allowing for the exploration of a large area of phase space within a single growth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Infomat
Infomat MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
37.70
自引率
3.10%
发文量
111
审稿时长
8 weeks
期刊介绍: InfoMat, an interdisciplinary and open-access journal, caters to the growing scientific interest in novel materials with unique electrical, optical, and magnetic properties, focusing on their applications in the rapid advancement of information technology. The journal serves as a high-quality platform for researchers across diverse scientific areas to share their findings, critical opinions, and foster collaboration between the materials science and information technology communities.
期刊最新文献
Cover Image Issue Information Back cover image Cover Image Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1