Marie Kulossa, Reinhard Oertel, Anna K. Hundsdoerfer
{"title":"三羟甲基丙烷和大戟科植物喂养实验后海勒叶片中的沣烯代谢物","authors":"Marie Kulossa, Reinhard Oertel, Anna K. Hundsdoerfer","doi":"10.1007/s00049-024-00404-7","DOIUrl":null,"url":null,"abstract":"<div><p>Within the genus <i>Hyles, Euphorbia</i> feeding appears to have evolved twice independently, in <i>H. euphorbiae</i> but also in <i>H. nicaea</i>, a species which had not been studied for its detoxification processes before. <i>Euphorbia</i> is known to contain toxic secondary metabolites, including diterpene esters, preventing most herbivores from feeding on them. We investigated the metabolisation of the standard phorbol ester Phorbol 12-myristate 13-acetate (TPA) and the diterpenes contained in <i>Euphorbia cyparissias</i> by the two species <i>Hyles euphorbiae</i> and <i>Hyles nicaea</i> (subspecies <i>nicaea</i>). For the first time, we report (1) The gut disposition of <i>Hyles n. nicaea</i> for this standard phorbol ester, which is commonly used in cancer and tumour research and (2) The disposition of the food plant tiglinaes of <i>Euphorbia cyparissias</i> after gut passage in both species and (3) Tigliane metabolites in the frass of TPA and of <i>E. cyparissias</i> feeding larvae. For both species around 5–25% of the TPA dose was recovered in the frass of the larvae, along with the metabolites phorbol and phorbol-13-acetate in very small amounts and traces. While the amounts of phorbol found did not differ much between the species frass, phorbol-13-acetate could be found in higher amounts in <i>Hyles n. nicaea</i> frass, indicating a difference in metabolisation. Moreover, enzymatic hydrolysis of TPA to phorbol-13-acetate and phorbol are postulated not to be the main metabolisation pathway, seeing that the amounts found only represent a small fraction of the TPA dose consumed.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00049-024-00404-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Tigliane metabolites in Hyles frass after feeding experiments with TPA and Euphorbia cyparissias\",\"authors\":\"Marie Kulossa, Reinhard Oertel, Anna K. Hundsdoerfer\",\"doi\":\"10.1007/s00049-024-00404-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Within the genus <i>Hyles, Euphorbia</i> feeding appears to have evolved twice independently, in <i>H. euphorbiae</i> but also in <i>H. nicaea</i>, a species which had not been studied for its detoxification processes before. <i>Euphorbia</i> is known to contain toxic secondary metabolites, including diterpene esters, preventing most herbivores from feeding on them. We investigated the metabolisation of the standard phorbol ester Phorbol 12-myristate 13-acetate (TPA) and the diterpenes contained in <i>Euphorbia cyparissias</i> by the two species <i>Hyles euphorbiae</i> and <i>Hyles nicaea</i> (subspecies <i>nicaea</i>). For the first time, we report (1) The gut disposition of <i>Hyles n. nicaea</i> for this standard phorbol ester, which is commonly used in cancer and tumour research and (2) The disposition of the food plant tiglinaes of <i>Euphorbia cyparissias</i> after gut passage in both species and (3) Tigliane metabolites in the frass of TPA and of <i>E. cyparissias</i> feeding larvae. For both species around 5–25% of the TPA dose was recovered in the frass of the larvae, along with the metabolites phorbol and phorbol-13-acetate in very small amounts and traces. While the amounts of phorbol found did not differ much between the species frass, phorbol-13-acetate could be found in higher amounts in <i>Hyles n. nicaea</i> frass, indicating a difference in metabolisation. Moreover, enzymatic hydrolysis of TPA to phorbol-13-acetate and phorbol are postulated not to be the main metabolisation pathway, seeing that the amounts found only represent a small fraction of the TPA dose consumed.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00049-024-00404-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00049-024-00404-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-024-00404-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在 Hyles 属中,大戟科植物的取食似乎有两次独立的进化,一次是在 H. euphorbiae 中,另一次是在 H. nicaea 中。众所周知,大戟含有有毒的次级代谢产物,包括二萜酯,这使得大多数食草动物无法取食它们。我们研究了两种物种 Hyles euphorbiae 和 Hyles nicaea(亚种 nicaea)对标准光甘油酯 Phorbol 12-myristate 13-acetate (TPA) 和 Euphorbia cyparissias 所含二萜的代谢过程。我们首次报告了:(1)Hyles n. nicaea 对这种常用于癌症和肿瘤研究的标准酚酯的肠道处置;(2)两种大戟科植物的食用植物 Tiglinaes 经过肠道后的处置;(3)TPA 和 E. cyparissias 摄食幼虫粪便中的 Tigliane 代谢物。在这两种生物的幼虫粪便中,都回收了约 5-25% 的三羟甲基丙烷剂量,以及极少量和痕量的代谢物酚和酚-13-乙酸酯。虽然在不同物种的虫体中发现的植物醇数量差别不大,但在 Hyles n. nicaea 的虫体中发现的植物醇-13-乙酸酯数量较高,这表明代谢过程存在差异。此外,考虑到所发现的数量只占 TPA 消耗量的一小部分,因此推测酶水解 TPA 到 phorbol-13-acetate 和 phorbol 并不是主要的代谢途径。
Tigliane metabolites in Hyles frass after feeding experiments with TPA and Euphorbia cyparissias
Within the genus Hyles, Euphorbia feeding appears to have evolved twice independently, in H. euphorbiae but also in H. nicaea, a species which had not been studied for its detoxification processes before. Euphorbia is known to contain toxic secondary metabolites, including diterpene esters, preventing most herbivores from feeding on them. We investigated the metabolisation of the standard phorbol ester Phorbol 12-myristate 13-acetate (TPA) and the diterpenes contained in Euphorbia cyparissias by the two species Hyles euphorbiae and Hyles nicaea (subspecies nicaea). For the first time, we report (1) The gut disposition of Hyles n. nicaea for this standard phorbol ester, which is commonly used in cancer and tumour research and (2) The disposition of the food plant tiglinaes of Euphorbia cyparissias after gut passage in both species and (3) Tigliane metabolites in the frass of TPA and of E. cyparissias feeding larvae. For both species around 5–25% of the TPA dose was recovered in the frass of the larvae, along with the metabolites phorbol and phorbol-13-acetate in very small amounts and traces. While the amounts of phorbol found did not differ much between the species frass, phorbol-13-acetate could be found in higher amounts in Hyles n. nicaea frass, indicating a difference in metabolisation. Moreover, enzymatic hydrolysis of TPA to phorbol-13-acetate and phorbol are postulated not to be the main metabolisation pathway, seeing that the amounts found only represent a small fraction of the TPA dose consumed.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.