{"title":"利用具有离散非线性不变式的热和盐平流-扩散方程模拟黑海环流","authors":"S. G. Demyshev, O. A. Dymova","doi":"10.1134/s0001433824700130","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this work, based on the results of predictive calculations, the accuracy of reproducing the Black Sea circulation is analyzed using new approximations of nonlinear terms in the transport equations, ensuring the conservation of temperature and salinity to a power greater than two. Numerical experiments have been carried out that differ in schemes for calculating temperature and salinity. In the first experiment, traditional schemes were used to ensure the conservation of temperature and salinity in the first and second degrees; in the second one, the temperature was maintained in the first and fifth degrees and salinity in the first and third; in the third experiment, the temperature was maintained in the first and third and salinity in the first and fifth degrees. Calculations were performed on the basis of MHI model with a resolution of 1.6 km and accounting a realistic atmospheric forcing for 2016. The validation of results was carried out based on comparison of model fields with data from contact and satellite measurements of temperature and salinity in 2016. An analysis of average and root mean square errors showed that, compared to the traditional approximation, the new difference schemes for the advection–diffusion equations of heat and salt, ensuring the preservation of predictive parameters to a power greater than two, improve the accuracy of reproducing of the Black Sea salinity in the upper 100-m layer throughout the year. Root mean square errors in the salinity field decrease by 15–20%, and the upper mixed layer thickness in winter and the upper boundary depth of the thermocline layer in summer in the central part of the sea are modeled about 10% more accurately. Based on the results of three experiments, the smallest deviations from observational data were obtained when using approximations that ensure the conservation of temperature to the third degree and salinity to the fifth degree.</p>","PeriodicalId":54911,"journal":{"name":"Izvestiya Atmospheric and Oceanic Physics","volume":"2013 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Black Sea Circulation Using Heat and Salt Advection–Diffusion Equations with Discrete Nonlinear Invariants\",\"authors\":\"S. G. Demyshev, O. A. Dymova\",\"doi\":\"10.1134/s0001433824700130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In this work, based on the results of predictive calculations, the accuracy of reproducing the Black Sea circulation is analyzed using new approximations of nonlinear terms in the transport equations, ensuring the conservation of temperature and salinity to a power greater than two. Numerical experiments have been carried out that differ in schemes for calculating temperature and salinity. In the first experiment, traditional schemes were used to ensure the conservation of temperature and salinity in the first and second degrees; in the second one, the temperature was maintained in the first and fifth degrees and salinity in the first and third; in the third experiment, the temperature was maintained in the first and third and salinity in the first and fifth degrees. Calculations were performed on the basis of MHI model with a resolution of 1.6 km and accounting a realistic atmospheric forcing for 2016. The validation of results was carried out based on comparison of model fields with data from contact and satellite measurements of temperature and salinity in 2016. An analysis of average and root mean square errors showed that, compared to the traditional approximation, the new difference schemes for the advection–diffusion equations of heat and salt, ensuring the preservation of predictive parameters to a power greater than two, improve the accuracy of reproducing of the Black Sea salinity in the upper 100-m layer throughout the year. Root mean square errors in the salinity field decrease by 15–20%, and the upper mixed layer thickness in winter and the upper boundary depth of the thermocline layer in summer in the central part of the sea are modeled about 10% more accurately. Based on the results of three experiments, the smallest deviations from observational data were obtained when using approximations that ensure the conservation of temperature to the third degree and salinity to the fifth degree.</p>\",\"PeriodicalId\":54911,\"journal\":{\"name\":\"Izvestiya Atmospheric and Oceanic Physics\",\"volume\":\"2013 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Atmospheric and Oceanic Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001433824700130\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Atmospheric and Oceanic Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s0001433824700130","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Modeling Black Sea Circulation Using Heat and Salt Advection–Diffusion Equations with Discrete Nonlinear Invariants
Abstract
In this work, based on the results of predictive calculations, the accuracy of reproducing the Black Sea circulation is analyzed using new approximations of nonlinear terms in the transport equations, ensuring the conservation of temperature and salinity to a power greater than two. Numerical experiments have been carried out that differ in schemes for calculating temperature and salinity. In the first experiment, traditional schemes were used to ensure the conservation of temperature and salinity in the first and second degrees; in the second one, the temperature was maintained in the first and fifth degrees and salinity in the first and third; in the third experiment, the temperature was maintained in the first and third and salinity in the first and fifth degrees. Calculations were performed on the basis of MHI model with a resolution of 1.6 km and accounting a realistic atmospheric forcing for 2016. The validation of results was carried out based on comparison of model fields with data from contact and satellite measurements of temperature and salinity in 2016. An analysis of average and root mean square errors showed that, compared to the traditional approximation, the new difference schemes for the advection–diffusion equations of heat and salt, ensuring the preservation of predictive parameters to a power greater than two, improve the accuracy of reproducing of the Black Sea salinity in the upper 100-m layer throughout the year. Root mean square errors in the salinity field decrease by 15–20%, and the upper mixed layer thickness in winter and the upper boundary depth of the thermocline layer in summer in the central part of the sea are modeled about 10% more accurately. Based on the results of three experiments, the smallest deviations from observational data were obtained when using approximations that ensure the conservation of temperature to the third degree and salinity to the fifth degree.
期刊介绍:
Izvestiya, Atmospheric and Oceanic Physics is a journal that publishes original scientific research and review articles on vital issues in the physics of the Earth’s atmosphere and hydrosphere and climate theory. The journal presents results of recent studies of physical processes in the atmosphere and ocean that control climate, weather, and their changes. These studies have possible practical applications. The journal also gives room to the discussion of results obtained in theoretical and experimental studies in various fields of oceanic and atmospheric physics, such as the dynamics of gas and water media, interaction of the atmosphere with the ocean and land surfaces, turbulence theory, heat balance and radiation processes, remote sensing and optics of both media, natural and man-induced climate changes, and the state of the atmosphere and ocean. The journal publishes papers on research techniques used in both media, current scientific information on domestic and foreign events in the physics of the atmosphere and ocean.