Victor Timmers;Agustí Egea-Àlvarez;Aris Gkountaras;Lie Xu
{"title":"带共用电解槽的离网风力涡轮机的控制与功率平衡","authors":"Victor Timmers;Agustí Egea-Àlvarez;Aris Gkountaras;Lie Xu","doi":"10.1109/TSTE.2024.3418043","DOIUrl":null,"url":null,"abstract":"Co-locating electrolyzers and offshore wind can significantly reduce the cost of green hydrogen. However, without a grid connection, a new control paradigm is required for the electrolyzer to follow the variable power supplied by the wind turbine. Commercial electrolyzers have power ramp rate limitations, which can result in a mismatch between the wind turbine and electrolyzer power, leading to frequent shutdown and potentially unstable operation. This paper is the first to develop a control system for this off-grid operation with three mechanisms to dynamically balance the power, including energy storage, rotor inertia, and enhanced pitch control. The results show that a $6.8 million supercapacitor is required with a power rating and capacity of approximately 6.7 MW and 8.5 kWh to enable the system to operate through 99% of the annual wind variation. If the electrolyzer ramp rates can be doubled, the same operating hours can be achieved using only control-based power balancing methods at the cost of a marginal reduction in energy production. If commercial electrolyzer ramp rates can be tripled, the system is able to operate without the need for any power balancing.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 4","pages":"2349-2360"},"PeriodicalIF":8.6000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control and Power Balancing of an Off-Grid Wind Turbine With Co-Located Electrolyzer\",\"authors\":\"Victor Timmers;Agustí Egea-Àlvarez;Aris Gkountaras;Lie Xu\",\"doi\":\"10.1109/TSTE.2024.3418043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Co-locating electrolyzers and offshore wind can significantly reduce the cost of green hydrogen. However, without a grid connection, a new control paradigm is required for the electrolyzer to follow the variable power supplied by the wind turbine. Commercial electrolyzers have power ramp rate limitations, which can result in a mismatch between the wind turbine and electrolyzer power, leading to frequent shutdown and potentially unstable operation. This paper is the first to develop a control system for this off-grid operation with three mechanisms to dynamically balance the power, including energy storage, rotor inertia, and enhanced pitch control. The results show that a $6.8 million supercapacitor is required with a power rating and capacity of approximately 6.7 MW and 8.5 kWh to enable the system to operate through 99% of the annual wind variation. If the electrolyzer ramp rates can be doubled, the same operating hours can be achieved using only control-based power balancing methods at the cost of a marginal reduction in energy production. If commercial electrolyzer ramp rates can be tripled, the system is able to operate without the need for any power balancing.\",\"PeriodicalId\":452,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Energy\",\"volume\":\"15 4\",\"pages\":\"2349-2360\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10569094/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10569094/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Control and Power Balancing of an Off-Grid Wind Turbine With Co-Located Electrolyzer
Co-locating electrolyzers and offshore wind can significantly reduce the cost of green hydrogen. However, without a grid connection, a new control paradigm is required for the electrolyzer to follow the variable power supplied by the wind turbine. Commercial electrolyzers have power ramp rate limitations, which can result in a mismatch between the wind turbine and electrolyzer power, leading to frequent shutdown and potentially unstable operation. This paper is the first to develop a control system for this off-grid operation with three mechanisms to dynamically balance the power, including energy storage, rotor inertia, and enhanced pitch control. The results show that a $6.8 million supercapacitor is required with a power rating and capacity of approximately 6.7 MW and 8.5 kWh to enable the system to operate through 99% of the annual wind variation. If the electrolyzer ramp rates can be doubled, the same operating hours can be achieved using only control-based power balancing methods at the cost of a marginal reduction in energy production. If commercial electrolyzer ramp rates can be tripled, the system is able to operate without the need for any power balancing.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.