高温含水层热能储存系统的技术经济评估--德国 Burgwedel 案例研究的启示

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS Applied Energy Pub Date : 2024-06-27 DOI:10.1016/j.apenergy.2024.123783
Dejian Zhou, Ke Li, Huhao Gao, Alexandru Tatomir, Martin Sauter, Leonhard Ganzer
{"title":"高温含水层热能储存系统的技术经济评估--德国 Burgwedel 案例研究的启示","authors":"Dejian Zhou, Ke Li, Huhao Gao, Alexandru Tatomir, Martin Sauter, Leonhard Ganzer","doi":"10.1016/j.apenergy.2024.123783","DOIUrl":null,"url":null,"abstract":"High-temperature aquifer thermal storage (HT-ATES) is an effective method to mitigate the increasing greenhouse gas emissions, and it is attracting industry attention as an alternative to traditional fossil fuels for heating and cooling. However, the uncertainty of exploration and long profit cycles impede the popularization of HT-ATES technology. In this paper, to optimize HT-ATES evaluation and make the results more convictive, we demonstrate a numerical study based on a real district and a proven aquifer. An integrated HT-ATES model includes the wellbore and aquifer is used to simulate the fluid flow and heat transfer. Moreover, a dynamic economic assessment is demonstrated depending on the HT-ATES fluctuation performance. A 30-year HT-ATES cycling simulation shows that the wellbore and aquifer have had a continuous heating loss since the operation started. Working well and balancing the well lost 2.7% and 2.2% of total energy through the wellbore. The aquifer lost 4.1% of total energy due to heating transfer to overburden and other layers. HT-ATES could recover around 90% of stored total energy. The HT-ATES economic performance is affected by the heating store and production cycling, the benefit mainly comes from the heating production season. The initial investment and heat exchange efficiency between the HT-ATES & end-application system determines the levelized heat (LCOH) cost and payback time, the optimist case still needs 3 years to be profitable. HT-ATES have considerable green benefits, it could reduce local CO emissions 1937 t/year.","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Techno-economic assessment of high-temperature aquifer thermal energy storage system, insights from a study case in Burgwedel, Germany\",\"authors\":\"Dejian Zhou, Ke Li, Huhao Gao, Alexandru Tatomir, Martin Sauter, Leonhard Ganzer\",\"doi\":\"10.1016/j.apenergy.2024.123783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-temperature aquifer thermal storage (HT-ATES) is an effective method to mitigate the increasing greenhouse gas emissions, and it is attracting industry attention as an alternative to traditional fossil fuels for heating and cooling. However, the uncertainty of exploration and long profit cycles impede the popularization of HT-ATES technology. In this paper, to optimize HT-ATES evaluation and make the results more convictive, we demonstrate a numerical study based on a real district and a proven aquifer. An integrated HT-ATES model includes the wellbore and aquifer is used to simulate the fluid flow and heat transfer. Moreover, a dynamic economic assessment is demonstrated depending on the HT-ATES fluctuation performance. A 30-year HT-ATES cycling simulation shows that the wellbore and aquifer have had a continuous heating loss since the operation started. Working well and balancing the well lost 2.7% and 2.2% of total energy through the wellbore. The aquifer lost 4.1% of total energy due to heating transfer to overburden and other layers. HT-ATES could recover around 90% of stored total energy. The HT-ATES economic performance is affected by the heating store and production cycling, the benefit mainly comes from the heating production season. The initial investment and heat exchange efficiency between the HT-ATES & end-application system determines the levelized heat (LCOH) cost and payback time, the optimist case still needs 3 years to be profitable. HT-ATES have considerable green benefits, it could reduce local CO emissions 1937 t/year.\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apenergy.2024.123783\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.apenergy.2024.123783","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

高温含水层蓄热(HT-ATES)是减少日益增长的温室气体排放的有效方法,作为传统化石燃料的供热和制冷替代品,它正吸引着业界的关注。然而,勘探的不确定性和较长的盈利周期阻碍了 HT-ATES 技术的推广。在本文中,为了优化 HT-ATES 评估并使结果更具说服力,我们展示了基于实际区域和成熟含水层的数值研究。HT-ATES 模型包括井筒和含水层,用于模拟流体流动和传热。此外,还根据 HT-ATES 的波动性能进行了动态经济评估。30 年 HT-ATES 循环模拟显示,自开始运行以来,井筒和含水层一直有持续的热损失。工作井和平衡井分别损失了井筒总能量的 2.7% 和 2.2%。含水层由于向覆盖层和其他地层传递热量,损失了总能量的 4.1%。HT-ATES 可回收约 90% 的存储总能量。HT-ATES 的经济效益受加热存储和生产周期的影响,其效益主要来自加热生产季节。HT-ATES 与终端应用系统之间的初始投资和热交换效率决定了平准热量(LCOH)成本和投资回收期,乐观情况下仍需要 3 年才能盈利。HT-ATES 具有可观的绿色效益,每年可减少当地二氧化碳排放量 1937 吨。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Techno-economic assessment of high-temperature aquifer thermal energy storage system, insights from a study case in Burgwedel, Germany
High-temperature aquifer thermal storage (HT-ATES) is an effective method to mitigate the increasing greenhouse gas emissions, and it is attracting industry attention as an alternative to traditional fossil fuels for heating and cooling. However, the uncertainty of exploration and long profit cycles impede the popularization of HT-ATES technology. In this paper, to optimize HT-ATES evaluation and make the results more convictive, we demonstrate a numerical study based on a real district and a proven aquifer. An integrated HT-ATES model includes the wellbore and aquifer is used to simulate the fluid flow and heat transfer. Moreover, a dynamic economic assessment is demonstrated depending on the HT-ATES fluctuation performance. A 30-year HT-ATES cycling simulation shows that the wellbore and aquifer have had a continuous heating loss since the operation started. Working well and balancing the well lost 2.7% and 2.2% of total energy through the wellbore. The aquifer lost 4.1% of total energy due to heating transfer to overburden and other layers. HT-ATES could recover around 90% of stored total energy. The HT-ATES economic performance is affected by the heating store and production cycling, the benefit mainly comes from the heating production season. The initial investment and heat exchange efficiency between the HT-ATES & end-application system determines the levelized heat (LCOH) cost and payback time, the optimist case still needs 3 years to be profitable. HT-ATES have considerable green benefits, it could reduce local CO emissions 1937 t/year.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
期刊最新文献
When thermochromic material meets shape memory alloy: A new smart window integrating thermal storage, temperature regulation, and ventilation Multi-objective sizing and dispatch for building thermal and battery storage towards economic and environmental synergy A coordinated control strategy and dynamic characteristics of coal-fired units coupled with the S-CO2 energy storage cycle Comparison of market designs ensuring network integrity in low voltage distribution systems with high DER penetration Research on the design and optimal control of the power take-off (PTO) system for underwater eel-type power generators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1