整合系统动力学和基于代理的建模:预测各种激励方案下电动汽车市场渗透率和温室气体减排的数据驱动框架

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS Applied Energy Pub Date : 2024-06-27 DOI:10.1016/j.apenergy.2024.123749
Weipeng Zhan , Zhenpo Wang , Junjun Deng , Peng Liu , Dingsong Cui
{"title":"整合系统动力学和基于代理的建模:预测各种激励方案下电动汽车市场渗透率和温室气体减排的数据驱动框架","authors":"Weipeng Zhan ,&nbsp;Zhenpo Wang ,&nbsp;Junjun Deng ,&nbsp;Peng Liu ,&nbsp;Dingsong Cui","doi":"10.1016/j.apenergy.2024.123749","DOIUrl":null,"url":null,"abstract":"<div><p>As the growing deployment towards transportation electrification, a critical focus has emerged on quantifying the reduction contribution of greenhouse gas emissions from electric vehicles towards achieving carbon neutrality under diverse policy scenarios in the future. This necessitates a dynamic model that captures the evolving composition of the vehicle fleet and accurately forecasts the penetration and developmental trajectory of the electric vehicles in the car market. However, previous studies have largely overlooked the heterogeneity in user usage attributes, rendering them less effective in evaluating the impact of usage-based incentives on electric vehicle market penetration. To bridge this research gap, this study introduces an innovative, data-driven framework that integrates system dynamics and agent-based model. The proposed model can predict levels of electric vehicle penetration and corresponding greenhouse gas emission reductions within the private passenger vehicle sector, under a variety of policy scenarios. Our findings indicate that usage-based incentives, when implemented with optimal intensity, yield more significant emission reduction impacts and long-term economic benefits compared to conventional purchase-based subsidy. These insights not only furnish actionable policy suggestions to expedite the electric vehicle industry's growth in China but also offer valuable implications for other countries seeking to implement effective strategies for combating climate change and fostering sustainable transportation initiatives.</p></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating system dynamics and agent-based modeling: A data-driven framework for predicting electric vehicle market penetration and GHG emissions reduction under various incentives scenarios\",\"authors\":\"Weipeng Zhan ,&nbsp;Zhenpo Wang ,&nbsp;Junjun Deng ,&nbsp;Peng Liu ,&nbsp;Dingsong Cui\",\"doi\":\"10.1016/j.apenergy.2024.123749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As the growing deployment towards transportation electrification, a critical focus has emerged on quantifying the reduction contribution of greenhouse gas emissions from electric vehicles towards achieving carbon neutrality under diverse policy scenarios in the future. This necessitates a dynamic model that captures the evolving composition of the vehicle fleet and accurately forecasts the penetration and developmental trajectory of the electric vehicles in the car market. However, previous studies have largely overlooked the heterogeneity in user usage attributes, rendering them less effective in evaluating the impact of usage-based incentives on electric vehicle market penetration. To bridge this research gap, this study introduces an innovative, data-driven framework that integrates system dynamics and agent-based model. The proposed model can predict levels of electric vehicle penetration and corresponding greenhouse gas emission reductions within the private passenger vehicle sector, under a variety of policy scenarios. Our findings indicate that usage-based incentives, when implemented with optimal intensity, yield more significant emission reduction impacts and long-term economic benefits compared to conventional purchase-based subsidy. These insights not only furnish actionable policy suggestions to expedite the electric vehicle industry's growth in China but also offer valuable implications for other countries seeking to implement effective strategies for combating climate change and fostering sustainable transportation initiatives.</p></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261924011322\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924011322","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

随着交通电气化的不断发展,如何量化电动汽车对减少温室气体排放的贡献,从而在未来不同的政策情景下实现碳中和,已成为一个重要焦点。这就需要一个动态模型来捕捉不断变化的车队组成,并准确预测电动汽车在汽车市场的渗透率和发展轨迹。然而,以往的研究在很大程度上忽视了用户使用属性的异质性,因此在评估基于使用的激励措施对电动汽车市场渗透率的影响方面效果不佳。为了弥补这一研究空白,本研究引入了一个创新的数据驱动框架,该框架整合了系统动力学和基于代理的模型。所提出的模型可以预测在各种政策情景下,电动汽车在私人乘用车领域的普及水平和相应的温室气体减排量。我们的研究结果表明,与传统的以购买为基础的补贴相比,以使用为基础的激励措施在以最佳强度实施时,能产生更显著的减排效果和长期经济效益。这些见解不仅为加快中国电动汽车行业的发展提供了可行的政策建议,也为其他国家寻求实施有效战略以应对气候变化和促进可持续交通发展提供了有价值的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating system dynamics and agent-based modeling: A data-driven framework for predicting electric vehicle market penetration and GHG emissions reduction under various incentives scenarios

As the growing deployment towards transportation electrification, a critical focus has emerged on quantifying the reduction contribution of greenhouse gas emissions from electric vehicles towards achieving carbon neutrality under diverse policy scenarios in the future. This necessitates a dynamic model that captures the evolving composition of the vehicle fleet and accurately forecasts the penetration and developmental trajectory of the electric vehicles in the car market. However, previous studies have largely overlooked the heterogeneity in user usage attributes, rendering them less effective in evaluating the impact of usage-based incentives on electric vehicle market penetration. To bridge this research gap, this study introduces an innovative, data-driven framework that integrates system dynamics and agent-based model. The proposed model can predict levels of electric vehicle penetration and corresponding greenhouse gas emission reductions within the private passenger vehicle sector, under a variety of policy scenarios. Our findings indicate that usage-based incentives, when implemented with optimal intensity, yield more significant emission reduction impacts and long-term economic benefits compared to conventional purchase-based subsidy. These insights not only furnish actionable policy suggestions to expedite the electric vehicle industry's growth in China but also offer valuable implications for other countries seeking to implement effective strategies for combating climate change and fostering sustainable transportation initiatives.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
期刊最新文献
Attention enhanced dual stream network with advanced feature selection for power forecasting Characterization by key performance indicators of SFERA-III project to ALTAYR packed-bed prototype From lab to industry: Scaling-up Fe-Ni bimetallic nano oxygen carrier for mid-temperature methane chemical looping reforming Optimal cost predictive BMS considering greywater recycling, responsive HVAC, and energy storage Electrifying the bus network with trolleybus: Analyzing the in motion charging technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1