Hui Li, Zhangpeng Qiu, Xiaoyi Han, Ming Zhang, Dan Liao, Haiyan Jin
{"title":"无人机飞行路径规划优化","authors":"Hui Li, Zhangpeng Qiu, Xiaoyi Han, Ming Zhang, Dan Liao, Haiyan Jin","doi":"10.1007/s11235-024-01167-w","DOIUrl":null,"url":null,"abstract":"<p>In modern warfare, the use of UAVs for reconnaissance, search and rescue missions is very common, and it is essential to plan the flight path of UAVs. However, in the face of complex battlefield environment, the existing flight path planning algorithms have the problems of long time consumption and unstable path. Therefore, this paper studies the UAV flight path planning optimization in complex battlefield environment. First, we construct the battlefield environment model. Then, by analyzing the UAV flight constraints existing in battlefield environment, the objective function is obtained. And the problem of UAV flight path planning optimization is transformed into a nonlinear combinatorial optimization problem. On this basis, an Adaptive Adjustment Flight Path Planning algorithm (AA-FPP) is proposed. The AA-FPP algorithm adaptively adjusts the absorption coefficient of fireflies by using chaotic strategy. It adjusts the control position updating formula by using time-varying inertia weight to enhance its global searching ability. Then, random factors based on Boltzmann selection strategy are introduced to perturb the iterative solutions in AA-FPP. It expands the search space of the path and enhances the convergence efficiency. Finally, simulation results show that the AA-FPP algorithm can successfully plan a flight path that reduces static/dynamic threat intensity. And it has greater advantages in path stability and planning time consumption.</p>","PeriodicalId":51194,"journal":{"name":"Telecommunication Systems","volume":"141 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UAV flight path planning optimization\",\"authors\":\"Hui Li, Zhangpeng Qiu, Xiaoyi Han, Ming Zhang, Dan Liao, Haiyan Jin\",\"doi\":\"10.1007/s11235-024-01167-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In modern warfare, the use of UAVs for reconnaissance, search and rescue missions is very common, and it is essential to plan the flight path of UAVs. However, in the face of complex battlefield environment, the existing flight path planning algorithms have the problems of long time consumption and unstable path. Therefore, this paper studies the UAV flight path planning optimization in complex battlefield environment. First, we construct the battlefield environment model. Then, by analyzing the UAV flight constraints existing in battlefield environment, the objective function is obtained. And the problem of UAV flight path planning optimization is transformed into a nonlinear combinatorial optimization problem. On this basis, an Adaptive Adjustment Flight Path Planning algorithm (AA-FPP) is proposed. The AA-FPP algorithm adaptively adjusts the absorption coefficient of fireflies by using chaotic strategy. It adjusts the control position updating formula by using time-varying inertia weight to enhance its global searching ability. Then, random factors based on Boltzmann selection strategy are introduced to perturb the iterative solutions in AA-FPP. It expands the search space of the path and enhances the convergence efficiency. Finally, simulation results show that the AA-FPP algorithm can successfully plan a flight path that reduces static/dynamic threat intensity. And it has greater advantages in path stability and planning time consumption.</p>\",\"PeriodicalId\":51194,\"journal\":{\"name\":\"Telecommunication Systems\",\"volume\":\"141 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Telecommunication Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11235-024-01167-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telecommunication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11235-024-01167-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
In modern warfare, the use of UAVs for reconnaissance, search and rescue missions is very common, and it is essential to plan the flight path of UAVs. However, in the face of complex battlefield environment, the existing flight path planning algorithms have the problems of long time consumption and unstable path. Therefore, this paper studies the UAV flight path planning optimization in complex battlefield environment. First, we construct the battlefield environment model. Then, by analyzing the UAV flight constraints existing in battlefield environment, the objective function is obtained. And the problem of UAV flight path planning optimization is transformed into a nonlinear combinatorial optimization problem. On this basis, an Adaptive Adjustment Flight Path Planning algorithm (AA-FPP) is proposed. The AA-FPP algorithm adaptively adjusts the absorption coefficient of fireflies by using chaotic strategy. It adjusts the control position updating formula by using time-varying inertia weight to enhance its global searching ability. Then, random factors based on Boltzmann selection strategy are introduced to perturb the iterative solutions in AA-FPP. It expands the search space of the path and enhances the convergence efficiency. Finally, simulation results show that the AA-FPP algorithm can successfully plan a flight path that reduces static/dynamic threat intensity. And it has greater advantages in path stability and planning time consumption.
期刊介绍:
Telecommunication Systems is a journal covering all aspects of modeling, analysis, design and management of telecommunication systems. The journal publishes high quality articles dealing with the use of analytic and quantitative tools for the modeling, analysis, design and management of telecommunication systems covering:
Performance Evaluation of Wide Area and Local Networks;
Network Interconnection;
Wire, wireless, Adhoc, mobile networks;
Impact of New Services (economic and organizational impact);
Fiberoptics and photonic switching;
DSL, ADSL, cable TV and their impact;
Design and Analysis Issues in Metropolitan Area Networks;
Networking Protocols;
Dynamics and Capacity Expansion of Telecommunication Systems;
Multimedia Based Systems, Their Design Configuration and Impact;
Configuration of Distributed Systems;
Pricing for Networking and Telecommunication Services;
Performance Analysis of Local Area Networks;
Distributed Group Decision Support Systems;
Configuring Telecommunication Systems with Reliability and Availability;
Cost Benefit Analysis and Economic Impact of Telecommunication Systems;
Standardization and Regulatory Issues;
Security, Privacy and Encryption in Telecommunication Systems;
Cellular, Mobile and Satellite Based Systems.