用于正弦-戈登方程长时动力学的劳森型指数积分器的改进均匀误差边界

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED Numerische Mathematik Pub Date : 2024-07-02 DOI:10.1007/s00211-024-01423-w
Yue Feng, Katharina Schratz
{"title":"用于正弦-戈登方程长时动力学的劳森型指数积分器的改进均匀误差边界","authors":"Yue Feng, Katharina Schratz","doi":"10.1007/s00211-024-01423-w","DOIUrl":null,"url":null,"abstract":"<p>We establish the improved uniform error bounds on a Lawson-type exponential integrator Fourier pseudospectral (LEI-FP) method for the long-time dynamics of sine-Gordon equation where the amplitude of the initial data is <span>\\(O(\\varepsilon )\\)</span> with <span>\\(0 &lt; \\varepsilon \\ll 1\\)</span> a dimensionless parameter up to the time at <span>\\(O(1/\\varepsilon ^2)\\)</span>. The numerical scheme combines a Lawson-type exponential integrator in time with a Fourier pseudospectral method for spatial discretization, which is fully explicit and efficient in practical computation thanks to the fast Fourier transform. By separating the linear part from the sine function and employing the regularity compensation oscillation (RCO) technique which is introduced to deal with the polynomial nonlinearity by phase cancellation, we carry out the improved error bounds for the semi-discretization at <span>\\(O(\\varepsilon ^2\\tau )\\)</span> instead of <span>\\(O(\\tau )\\)</span> according to classical error estimates and at <span>\\(O(h^m+\\varepsilon ^2\\tau )\\)</span> for the full-discretization up to the time <span>\\(T_{\\varepsilon } = T/\\varepsilon ^2\\)</span> with <span>\\(T&gt;0\\)</span> fixed. This is the first work to establish the improved uniform error bound for the long-time dynamics of the nonlinear Klein–Gordon equation with non-polynomial nonlinearity. The improved error bound is extended to an oscillatory sine-Gordon equation with <span>\\(O(\\varepsilon ^2)\\)</span> wavelength in time and <span>\\(O(\\varepsilon ^{-2})\\)</span> wave speed, which indicates that the temporal error is independent of <span>\\(\\varepsilon \\)</span> when the time step size is chosen as <span>\\(O(\\varepsilon ^2)\\)</span>. Finally, numerical examples are shown to confirm the improved error bounds and to demonstrate that they are sharp.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"60 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved uniform error bounds on a Lawson-type exponential integrator for the long-time dynamics of sine-Gordon equation\",\"authors\":\"Yue Feng, Katharina Schratz\",\"doi\":\"10.1007/s00211-024-01423-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We establish the improved uniform error bounds on a Lawson-type exponential integrator Fourier pseudospectral (LEI-FP) method for the long-time dynamics of sine-Gordon equation where the amplitude of the initial data is <span>\\\\(O(\\\\varepsilon )\\\\)</span> with <span>\\\\(0 &lt; \\\\varepsilon \\\\ll 1\\\\)</span> a dimensionless parameter up to the time at <span>\\\\(O(1/\\\\varepsilon ^2)\\\\)</span>. The numerical scheme combines a Lawson-type exponential integrator in time with a Fourier pseudospectral method for spatial discretization, which is fully explicit and efficient in practical computation thanks to the fast Fourier transform. By separating the linear part from the sine function and employing the regularity compensation oscillation (RCO) technique which is introduced to deal with the polynomial nonlinearity by phase cancellation, we carry out the improved error bounds for the semi-discretization at <span>\\\\(O(\\\\varepsilon ^2\\\\tau )\\\\)</span> instead of <span>\\\\(O(\\\\tau )\\\\)</span> according to classical error estimates and at <span>\\\\(O(h^m+\\\\varepsilon ^2\\\\tau )\\\\)</span> for the full-discretization up to the time <span>\\\\(T_{\\\\varepsilon } = T/\\\\varepsilon ^2\\\\)</span> with <span>\\\\(T&gt;0\\\\)</span> fixed. This is the first work to establish the improved uniform error bound for the long-time dynamics of the nonlinear Klein–Gordon equation with non-polynomial nonlinearity. The improved error bound is extended to an oscillatory sine-Gordon equation with <span>\\\\(O(\\\\varepsilon ^2)\\\\)</span> wavelength in time and <span>\\\\(O(\\\\varepsilon ^{-2})\\\\)</span> wave speed, which indicates that the temporal error is independent of <span>\\\\(\\\\varepsilon \\\\)</span> when the time step size is chosen as <span>\\\\(O(\\\\varepsilon ^2)\\\\)</span>. Finally, numerical examples are shown to confirm the improved error bounds and to demonstrate that they are sharp.</p>\",\"PeriodicalId\":49733,\"journal\":{\"name\":\"Numerische Mathematik\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerische Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00211-024-01423-w\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-024-01423-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们为正弦-戈登方程的长时动力学建立了改进的Lawson型指数积分器傅里叶伪谱(LEI-FP)方法的均匀误差边界,其中初始数据的振幅为\(O(\varepsilon )\),\(0 < \varepsilon \ll 1\)为无量纲参数,直到时间为\(O(1/\varepsilon ^2)\)。数值方案结合了时间上的劳森指数积分法和空间离散化的傅立叶伪谱法,由于快速傅立叶变换的存在,这种方法在实际计算中是完全显式和高效的。通过将线性部分从正弦函数中分离出来,并采用正则补偿振荡(RCO)技术,该技术通过相位消除来处理多项式非线性、我们根据经典误差估计,在 \(O(\varepsilon ^2\tau )\) 而非\(O(\tau )\)处对半离散化进行了改进的误差约束,并在\(O(h^m+\varepsilon ^2\tau )\)处对全离散化进行了改进的误差约束。(T_{\varepsilon } = T/\varepsilon ^2\) 的时间内进行离散化,而 \(T>;0)是固定的。这是第一个为具有非多项式非线性的克莱因-戈登非线性方程的长时动力学建立改进的均匀误差约束的工作。改进的误差约束被扩展到时间波长为\(O(\varepsilon ^{2})\)和波速为\(O(\varepsilon ^{-2})\)的振荡正弦-戈登方程,这表明当时间步长选择为\(O(\varepsilon ^{2})\)时,时间误差与\(\varepsilon \)无关。最后,我们用数值示例证实了改进后的误差边界,并证明它们是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved uniform error bounds on a Lawson-type exponential integrator for the long-time dynamics of sine-Gordon equation

We establish the improved uniform error bounds on a Lawson-type exponential integrator Fourier pseudospectral (LEI-FP) method for the long-time dynamics of sine-Gordon equation where the amplitude of the initial data is \(O(\varepsilon )\) with \(0 < \varepsilon \ll 1\) a dimensionless parameter up to the time at \(O(1/\varepsilon ^2)\). The numerical scheme combines a Lawson-type exponential integrator in time with a Fourier pseudospectral method for spatial discretization, which is fully explicit and efficient in practical computation thanks to the fast Fourier transform. By separating the linear part from the sine function and employing the regularity compensation oscillation (RCO) technique which is introduced to deal with the polynomial nonlinearity by phase cancellation, we carry out the improved error bounds for the semi-discretization at \(O(\varepsilon ^2\tau )\) instead of \(O(\tau )\) according to classical error estimates and at \(O(h^m+\varepsilon ^2\tau )\) for the full-discretization up to the time \(T_{\varepsilon } = T/\varepsilon ^2\) with \(T>0\) fixed. This is the first work to establish the improved uniform error bound for the long-time dynamics of the nonlinear Klein–Gordon equation with non-polynomial nonlinearity. The improved error bound is extended to an oscillatory sine-Gordon equation with \(O(\varepsilon ^2)\) wavelength in time and \(O(\varepsilon ^{-2})\) wave speed, which indicates that the temporal error is independent of \(\varepsilon \) when the time step size is chosen as \(O(\varepsilon ^2)\). Finally, numerical examples are shown to confirm the improved error bounds and to demonstrate that they are sharp.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Numerische Mathematik
Numerische Mathematik 数学-应用数学
CiteScore
4.10
自引率
4.80%
发文量
72
审稿时长
6-12 weeks
期刊介绍: Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers: 1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis) 2. Optimization and Control Theory 3. Mathematical Modeling 4. The mathematical aspects of Scientific Computing
期刊最新文献
The pressure-wired Stokes element: a mesh-robust version of the Scott–Vogelius element Mathematical analysis of a finite difference method for inhomogeneous incompressible Navier–Stokes equations A moment approach for entropy solutions of parameter-dependent hyperbolic conservation laws Circuits of ferromagnetic nanowires Efficient approximation of high-frequency Helmholtz solutions by Gaussian coherent states
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1