正庚烷和正十二烷二元混合物在旋转多组分喷射火焰中的大涡流模拟

IF 5.3 2区 工程技术 Q2 ENERGY & FUELS Proceedings of the Combustion Institute Pub Date : 2024-06-28 DOI:10.1016/j.proci.2024.105201
Nikola Sekularac, Thomas Lesaffre, Davide Laera, Laurent Gicquel
{"title":"正庚烷和正十二烷二元混合物在旋转多组分喷射火焰中的大涡流模拟","authors":"Nikola Sekularac, Thomas Lesaffre, Davide Laera, Laurent Gicquel","doi":"10.1016/j.proci.2024.105201","DOIUrl":null,"url":null,"abstract":"Well-understanding and mastering Sustainable Aviation Fuels (SAF) mixture composition as well as the potential of their initial component concentrations’ impact on flames is clearly of critical importance in today’s effort and energy transition. In this study, the focus lies on conducting Large Eddy Simulations (LES) to comprehend the impact of species concentration changes in well-controlled multi-component fuel blends on flame structures. The SICCA-spray rig from the EM2C laboratory operated with three blends of n-dodecane and n-heptane in varying proportions, is specifically addressed and investigated in light of the available data. To conduct these simulations, the dynamically thickened flame model and an evaporation multi-component sub-model are coupled with a reduced chemistry mechanism for n-heptane and n-dodecane binary blends. Across all investigated blends, the simulated swirling spray flame predictions align well with the experimental measurements confirming the suitability of the proposed modeling. For this configuration, the alterations in species concentration do not appear to significantly impact the overall flame structures and characteristics when observed from an average perspective. However, localized differences are identified, revealing notable composition effects. The simulation outcomes indicate that the early consumption of n-heptane contributes to stabilizing the flame, whereas the vaporization of n-dodecane is the primary factor responsible for combustion occurring further downstream. These effects are closely tied to the evaporation properties of each fuel compound and their concentration proportions within the blend, as expected. This insight highlights the intricate relationship between fuel properties, their concentrations within blends, and the resulting combustion behavior, shedding light on the complexities of multi-component fuel combustion characteristics.","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Eddy Simulations of n-heptane and n-dodecane binary blends in swirling multi-component spray flames\",\"authors\":\"Nikola Sekularac, Thomas Lesaffre, Davide Laera, Laurent Gicquel\",\"doi\":\"10.1016/j.proci.2024.105201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Well-understanding and mastering Sustainable Aviation Fuels (SAF) mixture composition as well as the potential of their initial component concentrations’ impact on flames is clearly of critical importance in today’s effort and energy transition. In this study, the focus lies on conducting Large Eddy Simulations (LES) to comprehend the impact of species concentration changes in well-controlled multi-component fuel blends on flame structures. The SICCA-spray rig from the EM2C laboratory operated with three blends of n-dodecane and n-heptane in varying proportions, is specifically addressed and investigated in light of the available data. To conduct these simulations, the dynamically thickened flame model and an evaporation multi-component sub-model are coupled with a reduced chemistry mechanism for n-heptane and n-dodecane binary blends. Across all investigated blends, the simulated swirling spray flame predictions align well with the experimental measurements confirming the suitability of the proposed modeling. For this configuration, the alterations in species concentration do not appear to significantly impact the overall flame structures and characteristics when observed from an average perspective. However, localized differences are identified, revealing notable composition effects. The simulation outcomes indicate that the early consumption of n-heptane contributes to stabilizing the flame, whereas the vaporization of n-dodecane is the primary factor responsible for combustion occurring further downstream. These effects are closely tied to the evaporation properties of each fuel compound and their concentration proportions within the blend, as expected. This insight highlights the intricate relationship between fuel properties, their concentrations within blends, and the resulting combustion behavior, shedding light on the complexities of multi-component fuel combustion characteristics.\",\"PeriodicalId\":408,\"journal\":{\"name\":\"Proceedings of the Combustion Institute\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Combustion Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.proci.2024.105201\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.proci.2024.105201","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

充分了解和掌握可持续航空燃料(SAF)的混合物成分及其初始成分浓度对火焰的潜在影响,对于当今的工作和能源转型显然至关重要。在这项研究中,重点是进行大涡流模拟(LES),以理解在控制良好的多组分混合燃料中物种浓度变化对火焰结构的影响。EM2C 实验室的 SICCA 喷雾装置使用了三种不同比例的正十二烷和正庚烷混合物,并根据现有数据对其进行了专门研究。为了进行这些模拟,将动态增稠火焰模型和蒸发多组分子模型与正庚烷和正十二烷二元混合物的还原化学机制相结合。在所有研究的共混物中,模拟的漩涡喷射火焰预测结果与实验测量结果非常吻合,这证实了所建议的建模方法的适用性。对于这种配置,从平均角度观察,物种浓度的变化似乎不会对整体火焰结构和特性产生重大影响。然而,局部差异被识别出来,显示出显著的成分效应。模拟结果表明,正庚烷的早期消耗有助于稳定火焰,而正十二烷的汽化则是导致下游燃烧的主要因素。正如预期的那样,这些影响与每种燃料化合物的蒸发特性及其在混合燃料中的浓度比例密切相关。这一见解凸显了燃料特性、它们在混合燃料中的浓度以及由此产生的燃烧行为之间错综复杂的关系,揭示了多组分燃料燃烧特性的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large Eddy Simulations of n-heptane and n-dodecane binary blends in swirling multi-component spray flames
Well-understanding and mastering Sustainable Aviation Fuels (SAF) mixture composition as well as the potential of their initial component concentrations’ impact on flames is clearly of critical importance in today’s effort and energy transition. In this study, the focus lies on conducting Large Eddy Simulations (LES) to comprehend the impact of species concentration changes in well-controlled multi-component fuel blends on flame structures. The SICCA-spray rig from the EM2C laboratory operated with three blends of n-dodecane and n-heptane in varying proportions, is specifically addressed and investigated in light of the available data. To conduct these simulations, the dynamically thickened flame model and an evaporation multi-component sub-model are coupled with a reduced chemistry mechanism for n-heptane and n-dodecane binary blends. Across all investigated blends, the simulated swirling spray flame predictions align well with the experimental measurements confirming the suitability of the proposed modeling. For this configuration, the alterations in species concentration do not appear to significantly impact the overall flame structures and characteristics when observed from an average perspective. However, localized differences are identified, revealing notable composition effects. The simulation outcomes indicate that the early consumption of n-heptane contributes to stabilizing the flame, whereas the vaporization of n-dodecane is the primary factor responsible for combustion occurring further downstream. These effects are closely tied to the evaporation properties of each fuel compound and their concentration proportions within the blend, as expected. This insight highlights the intricate relationship between fuel properties, their concentrations within blends, and the resulting combustion behavior, shedding light on the complexities of multi-component fuel combustion characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Proceedings of the Combustion Institute
Proceedings of the Combustion Institute 工程技术-工程:化工
CiteScore
7.00
自引率
0.00%
发文量
420
审稿时长
3.0 months
期刊介绍: The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review. Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.
期刊最新文献
Modelling collision frequencies and predicting bi-variate agglomerate size distributions for bi-disperse primary particle systems Experimental research on radiation blockage of the fuel vapor and flame in pool fires Micron-sized iron particles as energy carrier: Cycling experiments in a fixed-bed reactor On the inclusion of preferential diffusion effects for PAH tabulation in turbulent non-premixed ethylene/air sooting flames Machine learning assisted characterisation and prediction of droplet distributions in a liquid jet in cross-flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1