{"title":"云计算中的工作负载优先级和最佳任务调度:混合优化算法介绍","authors":"Yellamma Pachipala, Durga Bhavani Dasari, Veeranki Venkata Rama Maheswara Rao, Prakash Bethapudi, Tumma Srinivasarao","doi":"10.1007/s11276-024-03793-3","DOIUrl":null,"url":null,"abstract":"<p>Cloud computing represents an evolved form of cluster, client server, and grid computing, enabling users to seamlessly access resources over the internet. The quality and reliability of the cloud computing services are depends on the specific tasks undertaken by the users. Task Scheduling emerges as a pivotal factor in enhancing the efficiency and reliability of a cloud environment, aiming to optimize resource utilization. Furthermore, efficient task scheduling holds a prime importance in achieving superior performance, minimizing response time, reducing energy consumption and maximizing throughput. Assigning work to essential resources is a challenging process to achieve better performance. However, this paper plans to propose a novel workload prioritization and optimal task scheduling in the cloud with two steps. At first, the ranks are allotted to the tasks with Analytical Hierarchy Process based ranking process that uses a k-means clustering strategy to group the workloads. Then, the tasks are scheduled under the consideration of constraints like makespan, utilization cost, and migration cost and risk probability; based on priority. Accordingly, the task scheduling is done optimally by the proposed hybrid optimization Blue Updated Jellyfish Search Optimization that combines algorithms like Blue Monkey Optimization and Jelly fish Search Optimization algorithms. The performance of the proposed scheduling process is validated and proved over the conventional methods. </p>","PeriodicalId":23750,"journal":{"name":"Wireless Networks","volume":"24 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Workload prioritization and optimal task scheduling in cloud: introduction to hybrid optimization algorithm\",\"authors\":\"Yellamma Pachipala, Durga Bhavani Dasari, Veeranki Venkata Rama Maheswara Rao, Prakash Bethapudi, Tumma Srinivasarao\",\"doi\":\"10.1007/s11276-024-03793-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cloud computing represents an evolved form of cluster, client server, and grid computing, enabling users to seamlessly access resources over the internet. The quality and reliability of the cloud computing services are depends on the specific tasks undertaken by the users. Task Scheduling emerges as a pivotal factor in enhancing the efficiency and reliability of a cloud environment, aiming to optimize resource utilization. Furthermore, efficient task scheduling holds a prime importance in achieving superior performance, minimizing response time, reducing energy consumption and maximizing throughput. Assigning work to essential resources is a challenging process to achieve better performance. However, this paper plans to propose a novel workload prioritization and optimal task scheduling in the cloud with two steps. At first, the ranks are allotted to the tasks with Analytical Hierarchy Process based ranking process that uses a k-means clustering strategy to group the workloads. Then, the tasks are scheduled under the consideration of constraints like makespan, utilization cost, and migration cost and risk probability; based on priority. Accordingly, the task scheduling is done optimally by the proposed hybrid optimization Blue Updated Jellyfish Search Optimization that combines algorithms like Blue Monkey Optimization and Jelly fish Search Optimization algorithms. The performance of the proposed scheduling process is validated and proved over the conventional methods. </p>\",\"PeriodicalId\":23750,\"journal\":{\"name\":\"Wireless Networks\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wireless Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11276-024-03793-3\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11276-024-03793-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Workload prioritization and optimal task scheduling in cloud: introduction to hybrid optimization algorithm
Cloud computing represents an evolved form of cluster, client server, and grid computing, enabling users to seamlessly access resources over the internet. The quality and reliability of the cloud computing services are depends on the specific tasks undertaken by the users. Task Scheduling emerges as a pivotal factor in enhancing the efficiency and reliability of a cloud environment, aiming to optimize resource utilization. Furthermore, efficient task scheduling holds a prime importance in achieving superior performance, minimizing response time, reducing energy consumption and maximizing throughput. Assigning work to essential resources is a challenging process to achieve better performance. However, this paper plans to propose a novel workload prioritization and optimal task scheduling in the cloud with two steps. At first, the ranks are allotted to the tasks with Analytical Hierarchy Process based ranking process that uses a k-means clustering strategy to group the workloads. Then, the tasks are scheduled under the consideration of constraints like makespan, utilization cost, and migration cost and risk probability; based on priority. Accordingly, the task scheduling is done optimally by the proposed hybrid optimization Blue Updated Jellyfish Search Optimization that combines algorithms like Blue Monkey Optimization and Jelly fish Search Optimization algorithms. The performance of the proposed scheduling process is validated and proved over the conventional methods.
期刊介绍:
The wireless communication revolution is bringing fundamental changes to data networking, telecommunication, and is making integrated networks a reality. By freeing the user from the cord, personal communications networks, wireless LAN''s, mobile radio networks and cellular systems, harbor the promise of fully distributed mobile computing and communications, any time, anywhere.
Focusing on the networking and user aspects of the field, Wireless Networks provides a global forum for archival value contributions documenting these fast growing areas of interest. The journal publishes refereed articles dealing with research, experience and management issues of wireless networks. Its aim is to allow the reader to benefit from experience, problems and solutions described.