{"title":"认知无线电无线传感器网络(CRWSN)中的不平等聚类能量洞规避(UCEHA)算法","authors":"Ranjita Joon, Parul Tomar, Gyanendra Kumar, Balamurugan Balusamy, Anand Nayyar","doi":"10.1007/s11276-024-03801-6","DOIUrl":null,"url":null,"abstract":"<p>Cognitive Radio Wireless Sensor Networks (CRWSNs) promise optimized spectrum utilization but face challenges in sustaining energy balance, particularly due to the emergence of “hot spots.” In CRWSNs, Cluster Heads (CHs) closer to the sink experience higher traffic as compared to those farther away, primarily due to their role in data collaboration and relaying to the sink. This leads to early depletion of their energy reserves and potentially causing the network to partition creating hot spots or energy holes. Effective clustering algorithms are needed to mitigate these hot spots. The main objective of the paper is to propose a novel clustering scheme titled “Unequal Clustering Energy Hole Avoidance (UCEHA) algorithm” to address hot spot issues in CRWSNs. UCEHA partitions the network into clusters based on sink proximity, selecting CHs considering node energy, communication channels, neighbors, and sink distance. An enhanced spectrum-aware AODV mechanism facilitates efficient data routing. To test and validate the proposed methodology, extensive experimentations were conducted and the results demonstrate UCEHA’s superiority over existing methods, exhibiting reduced energy consumption (average 19%), improved network load balance (average 26%), increased network lifetime (average 40%), and enhanced throughput (average 8%). These results highlight the effectiveness of UCEHA algorithm in addressing energy imbalance and hot spot issues in CRWSNs, ultimately leading to enhanced network performance and longevity.</p>","PeriodicalId":23750,"journal":{"name":"Wireless Networks","volume":"27 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unequal Clustering Energy Hole Avoidance (UCEHA) algorithm in Cognitive Radio Wireless Sensor Networks (CRWSNs)\",\"authors\":\"Ranjita Joon, Parul Tomar, Gyanendra Kumar, Balamurugan Balusamy, Anand Nayyar\",\"doi\":\"10.1007/s11276-024-03801-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cognitive Radio Wireless Sensor Networks (CRWSNs) promise optimized spectrum utilization but face challenges in sustaining energy balance, particularly due to the emergence of “hot spots.” In CRWSNs, Cluster Heads (CHs) closer to the sink experience higher traffic as compared to those farther away, primarily due to their role in data collaboration and relaying to the sink. This leads to early depletion of their energy reserves and potentially causing the network to partition creating hot spots or energy holes. Effective clustering algorithms are needed to mitigate these hot spots. The main objective of the paper is to propose a novel clustering scheme titled “Unequal Clustering Energy Hole Avoidance (UCEHA) algorithm” to address hot spot issues in CRWSNs. UCEHA partitions the network into clusters based on sink proximity, selecting CHs considering node energy, communication channels, neighbors, and sink distance. An enhanced spectrum-aware AODV mechanism facilitates efficient data routing. To test and validate the proposed methodology, extensive experimentations were conducted and the results demonstrate UCEHA’s superiority over existing methods, exhibiting reduced energy consumption (average 19%), improved network load balance (average 26%), increased network lifetime (average 40%), and enhanced throughput (average 8%). These results highlight the effectiveness of UCEHA algorithm in addressing energy imbalance and hot spot issues in CRWSNs, ultimately leading to enhanced network performance and longevity.</p>\",\"PeriodicalId\":23750,\"journal\":{\"name\":\"Wireless Networks\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wireless Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11276-024-03801-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11276-024-03801-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Unequal Clustering Energy Hole Avoidance (UCEHA) algorithm in Cognitive Radio Wireless Sensor Networks (CRWSNs)
Cognitive Radio Wireless Sensor Networks (CRWSNs) promise optimized spectrum utilization but face challenges in sustaining energy balance, particularly due to the emergence of “hot spots.” In CRWSNs, Cluster Heads (CHs) closer to the sink experience higher traffic as compared to those farther away, primarily due to their role in data collaboration and relaying to the sink. This leads to early depletion of their energy reserves and potentially causing the network to partition creating hot spots or energy holes. Effective clustering algorithms are needed to mitigate these hot spots. The main objective of the paper is to propose a novel clustering scheme titled “Unequal Clustering Energy Hole Avoidance (UCEHA) algorithm” to address hot spot issues in CRWSNs. UCEHA partitions the network into clusters based on sink proximity, selecting CHs considering node energy, communication channels, neighbors, and sink distance. An enhanced spectrum-aware AODV mechanism facilitates efficient data routing. To test and validate the proposed methodology, extensive experimentations were conducted and the results demonstrate UCEHA’s superiority over existing methods, exhibiting reduced energy consumption (average 19%), improved network load balance (average 26%), increased network lifetime (average 40%), and enhanced throughput (average 8%). These results highlight the effectiveness of UCEHA algorithm in addressing energy imbalance and hot spot issues in CRWSNs, ultimately leading to enhanced network performance and longevity.
期刊介绍:
The wireless communication revolution is bringing fundamental changes to data networking, telecommunication, and is making integrated networks a reality. By freeing the user from the cord, personal communications networks, wireless LAN''s, mobile radio networks and cellular systems, harbor the promise of fully distributed mobile computing and communications, any time, anywhere.
Focusing on the networking and user aspects of the field, Wireless Networks provides a global forum for archival value contributions documenting these fast growing areas of interest. The journal publishes refereed articles dealing with research, experience and management issues of wireless networks. Its aim is to allow the reader to benefit from experience, problems and solutions described.