改进太阳能水分离的 g-C3N4/Bi2S3/ZnS 三元异质结光电阳极的合理设计

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL Sustainable Energy & Fuels Pub Date : 2024-06-20 DOI:10.1039/d4se00147h
Merin Joseph, Bhagatram Meena, Rosmy Joy, Sneha Joseph, Rajesh Kumar Sethi, Sebastian Nybin Remello, Suja Haridas, Challapalli Subrahmanyam
{"title":"改进太阳能水分离的 g-C3N4/Bi2S3/ZnS 三元异质结光电阳极的合理设计","authors":"Merin Joseph, Bhagatram Meena, Rosmy Joy, Sneha Joseph, Rajesh Kumar Sethi, Sebastian Nybin Remello, Suja Haridas, Challapalli Subrahmanyam","doi":"10.1039/d4se00147h","DOIUrl":null,"url":null,"abstract":"Photoelectrochemical (PEC) water splitting is an immensely effective method for producing hydrogen. In this study, we present the fabrication of an efficient photoanode based on a g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>/ZnS ternary heterojunction system using the doctor blade technique in combination with the successive ionic layer adsorption and reaction (SILAR) method. This ternary heterojunction demonstrated outstanding PEC performance, exhibiting a remarkable photocurrent density of 13.48 mA cm<small><sup>−2</sup></small> at 1.23 V <em>vs.</em> RHE in an alkaline medium. The enhanced photocurrent in the presence of hole scavengers could be due to sulfite oxidation. ZnS serves the dual purpose of acting as a passivation layer to prevent direct contact between Bi<small><sub>2</sub></small>S<small><sub>3</sub></small> and the electrolyte and offering an additional active energy state to enhance charge density, thus lending operational stability to the photoanode. The incident photon-to-current efficiency (IPCE) of the g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>/ZnS photoanode is 2.98%, which is substantially greater than 0.69% obtained with the g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/Bi<small><sub>2</sub></small>S<small><sub>3</sub></small> system. The g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>/ZnS photoanode exhibited a 94.6% average faradaic efficiency and high stability for up to 5000 seconds. Furthermore, electrochemical impedance spectroscopy (EIS) and photoluminescence (PL) studies revealed efficient electron transfer at the heterojunction and thus were in accordance with the observed enhancement of the photocurrent density of the fabricated electrodes.","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational design of a g-C3N4/Bi2S3/ZnS ternary heterojunction photoanode for improved solar water splitting\",\"authors\":\"Merin Joseph, Bhagatram Meena, Rosmy Joy, Sneha Joseph, Rajesh Kumar Sethi, Sebastian Nybin Remello, Suja Haridas, Challapalli Subrahmanyam\",\"doi\":\"10.1039/d4se00147h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photoelectrochemical (PEC) water splitting is an immensely effective method for producing hydrogen. In this study, we present the fabrication of an efficient photoanode based on a g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>/ZnS ternary heterojunction system using the doctor blade technique in combination with the successive ionic layer adsorption and reaction (SILAR) method. This ternary heterojunction demonstrated outstanding PEC performance, exhibiting a remarkable photocurrent density of 13.48 mA cm<small><sup>−2</sup></small> at 1.23 V <em>vs.</em> RHE in an alkaline medium. The enhanced photocurrent in the presence of hole scavengers could be due to sulfite oxidation. ZnS serves the dual purpose of acting as a passivation layer to prevent direct contact between Bi<small><sub>2</sub></small>S<small><sub>3</sub></small> and the electrolyte and offering an additional active energy state to enhance charge density, thus lending operational stability to the photoanode. The incident photon-to-current efficiency (IPCE) of the g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>/ZnS photoanode is 2.98%, which is substantially greater than 0.69% obtained with the g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/Bi<small><sub>2</sub></small>S<small><sub>3</sub></small> system. The g-C<small><sub>3</sub></small>N<small><sub>4</sub></small>/Bi<small><sub>2</sub></small>S<small><sub>3</sub></small>/ZnS photoanode exhibited a 94.6% average faradaic efficiency and high stability for up to 5000 seconds. Furthermore, electrochemical impedance spectroscopy (EIS) and photoluminescence (PL) studies revealed efficient electron transfer at the heterojunction and thus were in accordance with the observed enhancement of the photocurrent density of the fabricated electrodes.\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4se00147h\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4se00147h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光电化学(PEC)水分裂是一种非常有效的制氢方法。在本研究中,我们采用刮刀技术结合连续离子层吸附和反应(SILAR)方法,制备了基于 g-C3N4/Bi2S3/ZnS 三元异质结系统的高效光阳极。这种三元异质结具有出色的 PEC 性能,在碱性介质中与 RHE 相比,1.23 V 电压下的光电流密度高达 13.48 mA cm-2。在存在空穴清除剂的情况下,光电流的增强可能是由于亚硫酸盐的氧化作用。ZnS 具有双重作用,既可作为钝化层防止 Bi2S3 与电解质直接接触,又可提供额外的活性能态以提高电荷密度,从而使光电阴极具有运行稳定性。g-C3N4/Bi2S3/ZnS 光阳极的入射光子对电流效率(IPCE)为 2.98%,大大高于 g-C3N4/Bi2S3 系统的 0.69%。g-C3N4/Bi2S3/ZnS 光阳极的平均法拉第效率为 94.6%,并且在长达 5000 秒的时间内具有很高的稳定性。此外,电化学阻抗谱(EIS)和光致发光(PL)研究表明,异质结上的电子转移效率很高,因此与所观察到的制备电极光电流密度的提高相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rational design of a g-C3N4/Bi2S3/ZnS ternary heterojunction photoanode for improved solar water splitting
Photoelectrochemical (PEC) water splitting is an immensely effective method for producing hydrogen. In this study, we present the fabrication of an efficient photoanode based on a g-C3N4/Bi2S3/ZnS ternary heterojunction system using the doctor blade technique in combination with the successive ionic layer adsorption and reaction (SILAR) method. This ternary heterojunction demonstrated outstanding PEC performance, exhibiting a remarkable photocurrent density of 13.48 mA cm−2 at 1.23 V vs. RHE in an alkaline medium. The enhanced photocurrent in the presence of hole scavengers could be due to sulfite oxidation. ZnS serves the dual purpose of acting as a passivation layer to prevent direct contact between Bi2S3 and the electrolyte and offering an additional active energy state to enhance charge density, thus lending operational stability to the photoanode. The incident photon-to-current efficiency (IPCE) of the g-C3N4/Bi2S3/ZnS photoanode is 2.98%, which is substantially greater than 0.69% obtained with the g-C3N4/Bi2S3 system. The g-C3N4/Bi2S3/ZnS photoanode exhibited a 94.6% average faradaic efficiency and high stability for up to 5000 seconds. Furthermore, electrochemical impedance spectroscopy (EIS) and photoluminescence (PL) studies revealed efficient electron transfer at the heterojunction and thus were in accordance with the observed enhancement of the photocurrent density of the fabricated electrodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
期刊最新文献
Predicting the chemical composition of biocrude from hydrothermal liquefaction of biomasses using a multivariate statistical approach Extraction of turbulent flame structures and dynamic modes with corrected OH-PLIF images for a hydrogen micromix burner A metal-free perylene-porphyrin based covalent organic framework for electrocatalytic hydrogen evolution Techno-economic analysis of a solar-driven biomass pyrolysis plant for bio-oil and biochar production Visible light induced efficient photocatalytic hydrogen production by graphdiyne/CoSe ohmic heterojunction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1