基于卫星的物联网网络的端到端上行链路性能分析:随机几何方法

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of the Communications Society Pub Date : 2024-07-02 DOI:10.1109/OJCOMS.2024.3422110
Jiusi Zhou;Ruibo Wang;Basem Shihada;Mohamed-Slim Alouini
{"title":"基于卫星的物联网网络的端到端上行链路性能分析:随机几何方法","authors":"Jiusi Zhou;Ruibo Wang;Basem Shihada;Mohamed-Slim Alouini","doi":"10.1109/OJCOMS.2024.3422110","DOIUrl":null,"url":null,"abstract":"With the deployment of satellite constellations, Internet-of-Things (IoT) devices in remote areas have gained access to low-cost network connectivity. In this paper, we investigate the performance of IoT devices connecting in up-link through low Earth orbit (LEO) satellites to geosynchronous equatorial orbit (GEO) links. We model the dynamic LEO satellite constellation using the stochastic geometry method and provide an analysis of end-to-end availability with low-complexity and coverage performance estimates for the mentioned link. Based on the analytical expressions derived in this research, we make a sound investigation on the impact of constellation configuration, transmission power, and the relative positions of IoT devices and GEO satellites on end-to-end performance.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10580980","citationCount":"0","resultStr":"{\"title\":\"End-to-End Uplink Performance Analysis of Satellite-Based IoT Networks: A Stochastic Geometry Approach\",\"authors\":\"Jiusi Zhou;Ruibo Wang;Basem Shihada;Mohamed-Slim Alouini\",\"doi\":\"10.1109/OJCOMS.2024.3422110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the deployment of satellite constellations, Internet-of-Things (IoT) devices in remote areas have gained access to low-cost network connectivity. In this paper, we investigate the performance of IoT devices connecting in up-link through low Earth orbit (LEO) satellites to geosynchronous equatorial orbit (GEO) links. We model the dynamic LEO satellite constellation using the stochastic geometry method and provide an analysis of end-to-end availability with low-complexity and coverage performance estimates for the mentioned link. Based on the analytical expressions derived in this research, we make a sound investigation on the impact of constellation configuration, transmission power, and the relative positions of IoT devices and GEO satellites on end-to-end performance.\",\"PeriodicalId\":33803,\"journal\":{\"name\":\"IEEE Open Journal of the Communications Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10580980\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Communications Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10580980/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10580980/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

随着卫星星座的部署,偏远地区的物联网(IoT)设备获得了低成本的网络连接。本文研究了物联网设备通过低地球轨道(LEO)卫星上行链路连接到地球同步赤道轨道(GEO)链路的性能。我们使用随机几何方法对动态低地轨道卫星星座进行建模,并对端到端可用性进行分析,同时对上述链路的低复杂度和覆盖性能进行估计。基于本研究得出的分析表达式,我们对星座配置、传输功率以及物联网设备和 GEO 卫星的相对位置对端到端性能的影响进行了深入研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
End-to-End Uplink Performance Analysis of Satellite-Based IoT Networks: A Stochastic Geometry Approach
With the deployment of satellite constellations, Internet-of-Things (IoT) devices in remote areas have gained access to low-cost network connectivity. In this paper, we investigate the performance of IoT devices connecting in up-link through low Earth orbit (LEO) satellites to geosynchronous equatorial orbit (GEO) links. We model the dynamic LEO satellite constellation using the stochastic geometry method and provide an analysis of end-to-end availability with low-complexity and coverage performance estimates for the mentioned link. Based on the analytical expressions derived in this research, we make a sound investigation on the impact of constellation configuration, transmission power, and the relative positions of IoT devices and GEO satellites on end-to-end performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
期刊最新文献
GP-DGECN: Geometric Prior Dynamic Group Equivariant Convolutional Networks for Specific Emitter Identification A Tractable Framework for Spectrum Coexistence Between Satellite Receivers and Terrestrial Networks A Survey of LoRaWAN-Integrated Wearable Sensor Networks for Human Activity Recognition: Applications, Challenges and Possible Solutions Detection of Zero-Day Attacks in a Software-Defined LEO Constellation Network Using Enhanced Network Metric Predictions Few-Shot Class-Incremental Learning for Network Intrusion Detection Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1