{"title":"针对低剂量数字断层合成的深度残差学习与安斯孔变换","authors":"Youngjin Lee, Seungwan Lee, Chanrok Park","doi":"10.1007/s40042-024-01117-4","DOIUrl":null,"url":null,"abstract":"<div><p>Deep learning-based convolutional neural networks (CNNs) have been proposed for enhancing the quality of digital tomosynthesis (DTS) images. However, the direct applications of the conventional CNNs for low-dose DTS imaging are limited to provide acceptable image quality due to the inaccurate recognition of complex texture patterns. In this study, a deep residual learning network combined with the Anscombe transformation was proposed for simplifying the complex texture and restoring the low-dose DTS image quality. The proposed network consisted of convolution layers, max-pooling layers, up-sampling layers, and skip connections. The network training was performed to learn the residual images between the ground-truth and low-dose projections, which were converted using the Anscombe transformation. As a result, the proposed network enhanced the quantitative accuracy and noise characteristic of DTS images by 1.01–1.27 and 1.14–1.71 times, respectively, in comparison to low-dose DTS images and other deep learning networks. The spatial resolution of the DTS image restored using the proposed network was 1.12 times higher than that obtained using a deep image learning network. In conclusion, the proposed network can restore the low-dose DTS image quality and provide an optimal model for low-dose DTS imaging.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 4","pages":"333 - 341"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep residual learning with Anscombe transformation for low-dose digital tomosynthesis\",\"authors\":\"Youngjin Lee, Seungwan Lee, Chanrok Park\",\"doi\":\"10.1007/s40042-024-01117-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Deep learning-based convolutional neural networks (CNNs) have been proposed for enhancing the quality of digital tomosynthesis (DTS) images. However, the direct applications of the conventional CNNs for low-dose DTS imaging are limited to provide acceptable image quality due to the inaccurate recognition of complex texture patterns. In this study, a deep residual learning network combined with the Anscombe transformation was proposed for simplifying the complex texture and restoring the low-dose DTS image quality. The proposed network consisted of convolution layers, max-pooling layers, up-sampling layers, and skip connections. The network training was performed to learn the residual images between the ground-truth and low-dose projections, which were converted using the Anscombe transformation. As a result, the proposed network enhanced the quantitative accuracy and noise characteristic of DTS images by 1.01–1.27 and 1.14–1.71 times, respectively, in comparison to low-dose DTS images and other deep learning networks. The spatial resolution of the DTS image restored using the proposed network was 1.12 times higher than that obtained using a deep image learning network. In conclusion, the proposed network can restore the low-dose DTS image quality and provide an optimal model for low-dose DTS imaging.</p></div>\",\"PeriodicalId\":677,\"journal\":{\"name\":\"Journal of the Korean Physical Society\",\"volume\":\"85 4\",\"pages\":\"333 - 341\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Physical Society\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40042-024-01117-4\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-024-01117-4","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Deep residual learning with Anscombe transformation for low-dose digital tomosynthesis
Deep learning-based convolutional neural networks (CNNs) have been proposed for enhancing the quality of digital tomosynthesis (DTS) images. However, the direct applications of the conventional CNNs for low-dose DTS imaging are limited to provide acceptable image quality due to the inaccurate recognition of complex texture patterns. In this study, a deep residual learning network combined with the Anscombe transformation was proposed for simplifying the complex texture and restoring the low-dose DTS image quality. The proposed network consisted of convolution layers, max-pooling layers, up-sampling layers, and skip connections. The network training was performed to learn the residual images between the ground-truth and low-dose projections, which were converted using the Anscombe transformation. As a result, the proposed network enhanced the quantitative accuracy and noise characteristic of DTS images by 1.01–1.27 and 1.14–1.71 times, respectively, in comparison to low-dose DTS images and other deep learning networks. The spatial resolution of the DTS image restored using the proposed network was 1.12 times higher than that obtained using a deep image learning network. In conclusion, the proposed network can restore the low-dose DTS image quality and provide an optimal model for low-dose DTS imaging.
期刊介绍:
The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.