{"title":"雨滴对采用相干态和挤压真空态的马赫-泽恩德干涉仪相位精度的影响","authors":"Duan Xie, Zhe Li, Teng Lei, Weihong Liu","doi":"10.1007/s40042-024-01110-x","DOIUrl":null,"url":null,"abstract":"<div><p>The paper explores the influence of raindrops on the phase precision of Mach–Zehnder interferometer when the coherent states and the squeezed vacuum states are introduced into its input ports. The probability of photon loss <i>η</i> increases as the rain rate <i>R</i> or traveling distance <i>L</i> increases. In the presence of moderate or heavy rain, the loss probability <i>η</i> ranges from 0.2 to 0.48, or from 0.48 to 0.96 when the traveling distance <i>L</i> is close to 1 km. The threshold value <i>R</i><sub><i>th</i></sub> corresponds to the rain rate <i>R</i> at which the phase precision falls below the shot noise limit(SNL). At high squeezing level (<span>\\(r = \\arcsin h(\\sqrt {N/2} )\\)</span>, the light rain does not degrade the phase precision below SNL. We also calculate the threshold value of rain rate(<i>R</i><sub><i>th</i></sub>) at various low levels of squeezing and compare <i>R</i><sub><i>th</i></sub> for three low squeezing levels (15 dB,10 dB, and 6 dB) that can currently be achieved. The results show that, at the same traveling distance, <i>R</i><sub><i>th</i></sub> is larger for a 15 dB squeezing level compared to 10 dB and 6 dB squeezing levels. Even in the presence of moderate rain, the phase precision for 15 dB remains sub-SNL for long distances approaching 1 km. A feasible experimental proposal for investigating the influence of raindrops is put forward with the current technology.</p></div>","PeriodicalId":677,"journal":{"name":"Journal of the Korean Physical Society","volume":"85 4","pages":"342 - 352"},"PeriodicalIF":0.8000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of raindrops on phase precision of Mach–Zehnder interferometer employing the coherent states and the squeezed vacuum states\",\"authors\":\"Duan Xie, Zhe Li, Teng Lei, Weihong Liu\",\"doi\":\"10.1007/s40042-024-01110-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper explores the influence of raindrops on the phase precision of Mach–Zehnder interferometer when the coherent states and the squeezed vacuum states are introduced into its input ports. The probability of photon loss <i>η</i> increases as the rain rate <i>R</i> or traveling distance <i>L</i> increases. In the presence of moderate or heavy rain, the loss probability <i>η</i> ranges from 0.2 to 0.48, or from 0.48 to 0.96 when the traveling distance <i>L</i> is close to 1 km. The threshold value <i>R</i><sub><i>th</i></sub> corresponds to the rain rate <i>R</i> at which the phase precision falls below the shot noise limit(SNL). At high squeezing level (<span>\\\\(r = \\\\arcsin h(\\\\sqrt {N/2} )\\\\)</span>, the light rain does not degrade the phase precision below SNL. We also calculate the threshold value of rain rate(<i>R</i><sub><i>th</i></sub>) at various low levels of squeezing and compare <i>R</i><sub><i>th</i></sub> for three low squeezing levels (15 dB,10 dB, and 6 dB) that can currently be achieved. The results show that, at the same traveling distance, <i>R</i><sub><i>th</i></sub> is larger for a 15 dB squeezing level compared to 10 dB and 6 dB squeezing levels. Even in the presence of moderate rain, the phase precision for 15 dB remains sub-SNL for long distances approaching 1 km. A feasible experimental proposal for investigating the influence of raindrops is put forward with the current technology.</p></div>\",\"PeriodicalId\":677,\"journal\":{\"name\":\"Journal of the Korean Physical Society\",\"volume\":\"85 4\",\"pages\":\"342 - 352\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Physical Society\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40042-024-01110-x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Physical Society","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40042-024-01110-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文探讨了当相干态和挤压真空态被引入马赫-泽恩德干涉仪的输入端口时,雨滴对其相位精度的影响。光子损失概率 η 随着雨率 R 或移动距离 L 的增加而增大。在中雨或大雨情况下,损耗概率 η 在 0.2 到 0.48 之间,当移动距离 L 接近 1 千米时,损耗概率 η 在 0.48 到 0.96 之间。阈值 Rth 对应于相位精度低于射电噪声极限(SNL)的雨率 R。在高挤压水平(r = \arcsin h(\sqrt {N/2} )\)下,小雨不会使相位精度下降到 SNL 以下。我们还计算了各种低挤压水平下的降雨率阈值(Rth),并比较了目前可实现的三种低挤压水平(15 dB、10 dB 和 6 dB)下的降雨率阈值。结果表明,在相同的行驶距离下,15 dB 挤压水平的 Rth 比 10 dB 和 6 dB 挤压水平的 Rth 大。即使在有中雨的情况下,15 dB 的相位精度在接近 1 公里的长距离内仍低于 SNL。利用现有技术,为研究雨滴的影响提出了一个可行的实验方案。
The impact of raindrops on phase precision of Mach–Zehnder interferometer employing the coherent states and the squeezed vacuum states
The paper explores the influence of raindrops on the phase precision of Mach–Zehnder interferometer when the coherent states and the squeezed vacuum states are introduced into its input ports. The probability of photon loss η increases as the rain rate R or traveling distance L increases. In the presence of moderate or heavy rain, the loss probability η ranges from 0.2 to 0.48, or from 0.48 to 0.96 when the traveling distance L is close to 1 km. The threshold value Rth corresponds to the rain rate R at which the phase precision falls below the shot noise limit(SNL). At high squeezing level (\(r = \arcsin h(\sqrt {N/2} )\), the light rain does not degrade the phase precision below SNL. We also calculate the threshold value of rain rate(Rth) at various low levels of squeezing and compare Rth for three low squeezing levels (15 dB,10 dB, and 6 dB) that can currently be achieved. The results show that, at the same traveling distance, Rth is larger for a 15 dB squeezing level compared to 10 dB and 6 dB squeezing levels. Even in the presence of moderate rain, the phase precision for 15 dB remains sub-SNL for long distances approaching 1 km. A feasible experimental proposal for investigating the influence of raindrops is put forward with the current technology.
期刊介绍:
The Journal of the Korean Physical Society (JKPS) covers all fields of physics spanning from statistical physics and condensed matter physics to particle physics. The manuscript to be published in JKPS is required to hold the originality, significance, and recent completeness. The journal is composed of Full paper, Letters, and Brief sections. In addition, featured articles with outstanding results are selected by the Editorial board and introduced in the online version. For emphasis on aspect of international journal, several world-distinguished researchers join the Editorial board. High quality of papers may be express-published when it is recommended or requested.