利用 VSA 分布式表征学习归纳推理

Giacomo Camposampiero, Michael Hersche, Aleksandar Terzić, Roger Wattenhofer, Abu Sebastian, Abbas Rahimi
{"title":"利用 VSA 分布式表征学习归纳推理","authors":"Giacomo Camposampiero, Michael Hersche, Aleksandar Terzić, Roger Wattenhofer, Abu Sebastian, Abbas Rahimi","doi":"arxiv-2406.19121","DOIUrl":null,"url":null,"abstract":"We introduce the Abductive Rule Learner with Context-awareness (ARLC), a\nmodel that solves abstract reasoning tasks based on Learn-VRF. ARLC features a\nnovel and more broadly applicable training objective for abductive reasoning,\nresulting in better interpretability and higher accuracy when solving Raven's\nprogressive matrices (RPM). ARLC allows both programming domain knowledge and\nlearning the rules underlying a data distribution. We evaluate ARLC on the\nI-RAVEN dataset, showcasing state-of-the-art accuracy across both\nin-distribution and out-of-distribution (unseen attribute-rule pairs) tests.\nARLC surpasses neuro-symbolic and connectionist baselines, including large\nlanguage models, despite having orders of magnitude fewer parameters. We show\nARLC's robustness to post-programming training by incrementally learning from\nexamples on top of programmed knowledge, which only improves its performance\nand does not result in catastrophic forgetting of the programmed solution. We\nvalidate ARLC's seamless transfer learning from a 2x2 RPM constellation to\nunseen constellations. Our code is available at\nhttps://github.com/IBM/abductive-rule-learner-with-context-awareness.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"144 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Learning Abductive Reasoning using VSA Distributed Representations\",\"authors\":\"Giacomo Camposampiero, Michael Hersche, Aleksandar Terzić, Roger Wattenhofer, Abu Sebastian, Abbas Rahimi\",\"doi\":\"arxiv-2406.19121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the Abductive Rule Learner with Context-awareness (ARLC), a\\nmodel that solves abstract reasoning tasks based on Learn-VRF. ARLC features a\\nnovel and more broadly applicable training objective for abductive reasoning,\\nresulting in better interpretability and higher accuracy when solving Raven's\\nprogressive matrices (RPM). ARLC allows both programming domain knowledge and\\nlearning the rules underlying a data distribution. We evaluate ARLC on the\\nI-RAVEN dataset, showcasing state-of-the-art accuracy across both\\nin-distribution and out-of-distribution (unseen attribute-rule pairs) tests.\\nARLC surpasses neuro-symbolic and connectionist baselines, including large\\nlanguage models, despite having orders of magnitude fewer parameters. We show\\nARLC's robustness to post-programming training by incrementally learning from\\nexamples on top of programmed knowledge, which only improves its performance\\nand does not result in catastrophic forgetting of the programmed solution. We\\nvalidate ARLC's seamless transfer learning from a 2x2 RPM constellation to\\nunseen constellations. Our code is available at\\nhttps://github.com/IBM/abductive-rule-learner-with-context-awareness.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"144 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.19121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.19121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了具有情境感知能力的归纳式规则学习器(ARLC),这是一种基于 Learn-VRF 解决抽象推理任务的模型。ARLC 的特点是为归纳推理提供了一个更高级、更广泛适用的训练目标,从而在求解瑞文渐进矩阵(RPM)时具有更好的可解释性和更高的准确性。ARLC 既可以编程领域知识,也可以学习数据分布的基本规则。我们在I-RAVEN数据集上对ARLC进行了评估,在分布内和分布外(未见属性-规则对)测试中展示了最先进的准确性。ARLC超越了神经符号和连接主义基线,包括大型语言模型,尽管其参数数量级要少得多。我们通过在编程知识的基础上增量学习示例,展示了 ARLC 对编程后训练的鲁棒性,这只会提高其性能,而不会导致编程解决方案的灾难性遗忘。我们验证了 ARLC 从 2x2 RPM 星座到所见星座的无缝迁移学习。我们的代码可在https://github.com/IBM/abductive-rule-learner-with-context-awareness。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Learning Abductive Reasoning using VSA Distributed Representations
We introduce the Abductive Rule Learner with Context-awareness (ARLC), a model that solves abstract reasoning tasks based on Learn-VRF. ARLC features a novel and more broadly applicable training objective for abductive reasoning, resulting in better interpretability and higher accuracy when solving Raven's progressive matrices (RPM). ARLC allows both programming domain knowledge and learning the rules underlying a data distribution. We evaluate ARLC on the I-RAVEN dataset, showcasing state-of-the-art accuracy across both in-distribution and out-of-distribution (unseen attribute-rule pairs) tests. ARLC surpasses neuro-symbolic and connectionist baselines, including large language models, despite having orders of magnitude fewer parameters. We show ARLC's robustness to post-programming training by incrementally learning from examples on top of programmed knowledge, which only improves its performance and does not result in catastrophic forgetting of the programmed solution. We validate ARLC's seamless transfer learning from a 2x2 RPM constellation to unseen constellations. Our code is available at https://github.com/IBM/abductive-rule-learner-with-context-awareness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1