大型语言模型是可解释的学习者

Ruochen Wang, Si Si, Felix Yu, Dorothea Wiesmann, Cho-Jui Hsieh, Inderjit Dhillon
{"title":"大型语言模型是可解释的学习者","authors":"Ruochen Wang, Si Si, Felix Yu, Dorothea Wiesmann, Cho-Jui Hsieh, Inderjit Dhillon","doi":"arxiv-2406.17224","DOIUrl":null,"url":null,"abstract":"The trade-off between expressiveness and interpretability remains a core\nchallenge when building human-centric predictive models for classification and\ndecision-making. While symbolic rules offer interpretability, they often lack\nexpressiveness, whereas neural networks excel in performance but are known for\nbeing black boxes. In this paper, we show a combination of Large Language\nModels (LLMs) and symbolic programs can bridge this gap. In the proposed\nLLM-based Symbolic Programs (LSPs), the pretrained LLM with natural language\nprompts provides a massive set of interpretable modules that can transform raw\ninput into natural language concepts. Symbolic programs then integrate these\nmodules into an interpretable decision rule. To train LSPs, we develop a\ndivide-and-conquer approach to incrementally build the program from scratch,\nwhere the learning process of each step is guided by LLMs. To evaluate the\neffectiveness of LSPs in extracting interpretable and accurate knowledge from\ndata, we introduce IL-Bench, a collection of diverse tasks, including both\nsynthetic and real-world scenarios across different modalities. Empirical\nresults demonstrate LSP's superior performance compared to traditional\nneurosymbolic programs and vanilla automatic prompt tuning methods. Moreover,\nas the knowledge learned by LSP is a combination of natural language\ndescriptions and symbolic rules, it is easily transferable to humans\n(interpretable), and other LLMs, and generalizes well to out-of-distribution\nsamples.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large Language Models are Interpretable Learners\",\"authors\":\"Ruochen Wang, Si Si, Felix Yu, Dorothea Wiesmann, Cho-Jui Hsieh, Inderjit Dhillon\",\"doi\":\"arxiv-2406.17224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The trade-off between expressiveness and interpretability remains a core\\nchallenge when building human-centric predictive models for classification and\\ndecision-making. While symbolic rules offer interpretability, they often lack\\nexpressiveness, whereas neural networks excel in performance but are known for\\nbeing black boxes. In this paper, we show a combination of Large Language\\nModels (LLMs) and symbolic programs can bridge this gap. In the proposed\\nLLM-based Symbolic Programs (LSPs), the pretrained LLM with natural language\\nprompts provides a massive set of interpretable modules that can transform raw\\ninput into natural language concepts. Symbolic programs then integrate these\\nmodules into an interpretable decision rule. To train LSPs, we develop a\\ndivide-and-conquer approach to incrementally build the program from scratch,\\nwhere the learning process of each step is guided by LLMs. To evaluate the\\neffectiveness of LSPs in extracting interpretable and accurate knowledge from\\ndata, we introduce IL-Bench, a collection of diverse tasks, including both\\nsynthetic and real-world scenarios across different modalities. Empirical\\nresults demonstrate LSP's superior performance compared to traditional\\nneurosymbolic programs and vanilla automatic prompt tuning methods. Moreover,\\nas the knowledge learned by LSP is a combination of natural language\\ndescriptions and symbolic rules, it is easily transferable to humans\\n(interpretable), and other LLMs, and generalizes well to out-of-distribution\\nsamples.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.17224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.17224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在建立以人为中心的分类和决策预测模型时,表达能力和可解释性之间的权衡仍然是一个核心挑战。虽然符号规则提供了可解释性,但它们往往缺乏表现力,而神经网络虽然性能卓越,却以黑箱著称。在本文中,我们展示了大型语言模型(LLM)与符号程序的结合可以弥合这一差距。在我们提出的基于大型语言模型的符号程序(LSP)中,预训练的大型语言模型带有自然语言提示,提供了大量可解释的模块集,可以将原始输入转化为自然语言概念。然后,符号程序将这些模块整合到可解释的决策规则中。为了训练 LSP,我们开发了一种 "分而治之"(adivide-and-conquer)的方法,从零开始逐步构建程序,其中每一步的学习过程都由 LLMs 指导。为了评估 LSP 从数据中提取可解释的准确知识的效果,我们引入了 IL-Bench,这是一个多样化任务的集合,包括不同模式的合成任务和真实世界场景。实证结果表明,与传统的神经符号程序和虚构的自动提示调整方法相比,LSP 的性能更胜一筹。此外,由于 LSP 学习到的知识是自然语言描述和符号规则的结合,因此很容易将其移植到人类(可解释)和其他 LLM 中,并能很好地泛化到分布外样本中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large Language Models are Interpretable Learners
The trade-off between expressiveness and interpretability remains a core challenge when building human-centric predictive models for classification and decision-making. While symbolic rules offer interpretability, they often lack expressiveness, whereas neural networks excel in performance but are known for being black boxes. In this paper, we show a combination of Large Language Models (LLMs) and symbolic programs can bridge this gap. In the proposed LLM-based Symbolic Programs (LSPs), the pretrained LLM with natural language prompts provides a massive set of interpretable modules that can transform raw input into natural language concepts. Symbolic programs then integrate these modules into an interpretable decision rule. To train LSPs, we develop a divide-and-conquer approach to incrementally build the program from scratch, where the learning process of each step is guided by LLMs. To evaluate the effectiveness of LSPs in extracting interpretable and accurate knowledge from data, we introduce IL-Bench, a collection of diverse tasks, including both synthetic and real-world scenarios across different modalities. Empirical results demonstrate LSP's superior performance compared to traditional neurosymbolic programs and vanilla automatic prompt tuning methods. Moreover, as the knowledge learned by LSP is a combination of natural language descriptions and symbolic rules, it is easily transferable to humans (interpretable), and other LLMs, and generalizes well to out-of-distribution samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1