神经概念活页夹

Wolfgang Stammer, Antonia Wüst, David Steinmann, Kristian Kersting
{"title":"神经概念活页夹","authors":"Wolfgang Stammer, Antonia Wüst, David Steinmann, Kristian Kersting","doi":"arxiv-2406.09949","DOIUrl":null,"url":null,"abstract":"The challenge in object-based visual reasoning lies in generating descriptive\nyet distinct concept representations. Moreover, doing this in an unsupervised\nfashion requires human users to understand a model's learned concepts and\npotentially revise false concepts. In addressing this challenge, we introduce\nthe Neural Concept Binder, a new framework for deriving discrete concept\nrepresentations resulting in what we term \"concept-slot encodings\". These\nencodings leverage both \"soft binding\" via object-centric block-slot encodings\nand \"hard binding\" via retrieval-based inference. The Neural Concept Binder\nfacilitates straightforward concept inspection and direct integration of\nexternal knowledge, such as human input or insights from other AI models like\nGPT-4. Additionally, we demonstrate that incorporating the hard binding\nmechanism does not compromise performance; instead, it enables seamless\nintegration into both neural and symbolic modules for intricate reasoning\ntasks, as evidenced by evaluations on our newly introduced CLEVR-Sudoku\ndataset.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Concept Binder\",\"authors\":\"Wolfgang Stammer, Antonia Wüst, David Steinmann, Kristian Kersting\",\"doi\":\"arxiv-2406.09949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The challenge in object-based visual reasoning lies in generating descriptive\\nyet distinct concept representations. Moreover, doing this in an unsupervised\\nfashion requires human users to understand a model's learned concepts and\\npotentially revise false concepts. In addressing this challenge, we introduce\\nthe Neural Concept Binder, a new framework for deriving discrete concept\\nrepresentations resulting in what we term \\\"concept-slot encodings\\\". These\\nencodings leverage both \\\"soft binding\\\" via object-centric block-slot encodings\\nand \\\"hard binding\\\" via retrieval-based inference. The Neural Concept Binder\\nfacilitates straightforward concept inspection and direct integration of\\nexternal knowledge, such as human input or insights from other AI models like\\nGPT-4. Additionally, we demonstrate that incorporating the hard binding\\nmechanism does not compromise performance; instead, it enables seamless\\nintegration into both neural and symbolic modules for intricate reasoning\\ntasks, as evidenced by evaluations on our newly introduced CLEVR-Sudoku\\ndataset.\",\"PeriodicalId\":501033,\"journal\":{\"name\":\"arXiv - CS - Symbolic Computation\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.09949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.09949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于对象的视觉推理面临的挑战在于如何生成描述性的、独特的概念表征。此外,要在无监督的情况下做到这一点,需要人类用户理解模型学习到的概念,并有可能修改错误的概念。为了应对这一挑战,我们引入了神经概念绑定器(Neural Concept Binder),这是一种用于生成离散概念表征的新框架,我们称之为 "概念槽编码"(concept-slot encodings)。这些编码既可以通过以对象为中心的块槽编码实现 "软绑定",也可以通过基于检索的推理实现 "硬绑定"。神经概念绑定器有助于直接进行概念检查和直接整合外部知识,如人类输入或来自其他人工智能模型(如 GPT-4)的见解。此外,我们在新推出的 CLEVR-Sudokudataset 上进行的评估证明,采用硬绑定机制并不会影响性能;相反,它还能将复杂的推理任务无缝集成到神经和符号模块中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural Concept Binder
The challenge in object-based visual reasoning lies in generating descriptive yet distinct concept representations. Moreover, doing this in an unsupervised fashion requires human users to understand a model's learned concepts and potentially revise false concepts. In addressing this challenge, we introduce the Neural Concept Binder, a new framework for deriving discrete concept representations resulting in what we term "concept-slot encodings". These encodings leverage both "soft binding" via object-centric block-slot encodings and "hard binding" via retrieval-based inference. The Neural Concept Binder facilitates straightforward concept inspection and direct integration of external knowledge, such as human input or insights from other AI models like GPT-4. Additionally, we demonstrate that incorporating the hard binding mechanism does not compromise performance; instead, it enables seamless integration into both neural and symbolic modules for intricate reasoning tasks, as evidenced by evaluations on our newly introduced CLEVR-Sudoku dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthesizing Evolving Symbolic Representations for Autonomous Systems Introducing Quantification into a Hierarchical Graph Rewriting Language Towards Verified Polynomial Factorisation Symbolic Regression with a Learned Concept Library Active Symbolic Discovery of Ordinary Differential Equations via Phase Portrait Sketching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1