在垂直管道中加热超临界二氧化碳的异常传热比较研究

Youzhou Jiao , Yu Zeng , Xinxin Liu , Gang Li , Chao He , Liang Liu , Pengfei Li , Junfeng Guo , Shijie Zhang
{"title":"在垂直管道中加热超临界二氧化碳的异常传热比较研究","authors":"Youzhou Jiao ,&nbsp;Yu Zeng ,&nbsp;Xinxin Liu ,&nbsp;Gang Li ,&nbsp;Chao He ,&nbsp;Liang Liu ,&nbsp;Pengfei Li ,&nbsp;Junfeng Guo ,&nbsp;Shijie Zhang","doi":"10.1016/j.icheatmasstransfer.2024.107766","DOIUrl":null,"url":null,"abstract":"<div><p>The heat transfer characteristics of supercritical CO<sub>2</sub> heated in vertical smooth tube are experimentally and numerically investigated. The results show that the M-shaped velocity corresponds to heat transfer enhancement (HTE) at <em>G</em> = 100 kg/m<sup>2</sup>s, <em>q</em> = 20 kW/m<sup>2</sup>, and the heat transfer coefficient (HTC) is 15% higher than that of normal heat transfer (NHT). While, the M-shaped velocity causes significant heat transfer deterioration (HTD) before the <em>T</em><sub>pc</sub> at <em>G</em> = 278 kg/m<sup>2</sup>s, <em>q</em> = 35 kW/m<sup>2</sup>, and the HTC of HTD is 28%–42% of that in NHT. According to the numerical analysis on the M-shaped flow structure, it reveals that the zero-velocity gradient point of abNHT (HTE and HTD) always falls into the buffer layer (5 &lt; <em>y</em><sup>+</sup> &lt; 30). While, the zero-velocity gradient point of the heat transfer recovery (HTR) is in the log-law region (30 &lt; <em>y</em><sup>+</sup> &lt; 60). The <em>u</em>/<em>u</em><sub>0</sub> of the zero-velocity gradient point of HTE are larger than 1.35. The cross-section turbulent kinetic energy structure shows that smaller TKE in the near-wall region is the dominant factor for HTD and larger TKE in the core region is the dominant factor for HTE.</p></div>","PeriodicalId":332,"journal":{"name":"International Communications in Heat and Mass Transfer","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative study on abnormal heat transfer of supercritical CO2 heated in vertical tubes\",\"authors\":\"Youzhou Jiao ,&nbsp;Yu Zeng ,&nbsp;Xinxin Liu ,&nbsp;Gang Li ,&nbsp;Chao He ,&nbsp;Liang Liu ,&nbsp;Pengfei Li ,&nbsp;Junfeng Guo ,&nbsp;Shijie Zhang\",\"doi\":\"10.1016/j.icheatmasstransfer.2024.107766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The heat transfer characteristics of supercritical CO<sub>2</sub> heated in vertical smooth tube are experimentally and numerically investigated. The results show that the M-shaped velocity corresponds to heat transfer enhancement (HTE) at <em>G</em> = 100 kg/m<sup>2</sup>s, <em>q</em> = 20 kW/m<sup>2</sup>, and the heat transfer coefficient (HTC) is 15% higher than that of normal heat transfer (NHT). While, the M-shaped velocity causes significant heat transfer deterioration (HTD) before the <em>T</em><sub>pc</sub> at <em>G</em> = 278 kg/m<sup>2</sup>s, <em>q</em> = 35 kW/m<sup>2</sup>, and the HTC of HTD is 28%–42% of that in NHT. According to the numerical analysis on the M-shaped flow structure, it reveals that the zero-velocity gradient point of abNHT (HTE and HTD) always falls into the buffer layer (5 &lt; <em>y</em><sup>+</sup> &lt; 30). While, the zero-velocity gradient point of the heat transfer recovery (HTR) is in the log-law region (30 &lt; <em>y</em><sup>+</sup> &lt; 60). The <em>u</em>/<em>u</em><sub>0</sub> of the zero-velocity gradient point of HTE are larger than 1.35. The cross-section turbulent kinetic energy structure shows that smaller TKE in the near-wall region is the dominant factor for HTD and larger TKE in the core region is the dominant factor for HTE.</p></div>\",\"PeriodicalId\":332,\"journal\":{\"name\":\"International Communications in Heat and Mass Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Communications in Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0735193324005281\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Communications in Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0735193324005281","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

实验和数值研究了在垂直光滑管中加热超临界 CO 的传热特性。结果表明,在 = 100 kg/ms, = 20 kW/m 时,M 型速度对应于传热增强(HTE),传热系数(HTC)比正常传热(NHT)高 15%。而 M 型速度在 = 278 kg/ms, = 35 kW/m 时会导致明显的传热恶化(HTD),HTD 的 HTC 是 NHT 的 28%-42%。对 M 型流动结构的数值分析表明,abNHT 的零速度梯度点(HTE 和 HTD)总是落在缓冲层中(5 < < 30)。而传热回收(HTR)的零速度梯度点位于对数律区域(30 < < 60)。HTE 零速度梯度点的/均值大于 1.35。横截面湍流动能结构表明,近壁区域较小的 TKE 是 HTD 的主导因素,而核心区域较大的 TKE 是 HTE 的主导因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparative study on abnormal heat transfer of supercritical CO2 heated in vertical tubes

The heat transfer characteristics of supercritical CO2 heated in vertical smooth tube are experimentally and numerically investigated. The results show that the M-shaped velocity corresponds to heat transfer enhancement (HTE) at G = 100 kg/m2s, q = 20 kW/m2, and the heat transfer coefficient (HTC) is 15% higher than that of normal heat transfer (NHT). While, the M-shaped velocity causes significant heat transfer deterioration (HTD) before the Tpc at G = 278 kg/m2s, q = 35 kW/m2, and the HTC of HTD is 28%–42% of that in NHT. According to the numerical analysis on the M-shaped flow structure, it reveals that the zero-velocity gradient point of abNHT (HTE and HTD) always falls into the buffer layer (5 < y+ < 30). While, the zero-velocity gradient point of the heat transfer recovery (HTR) is in the log-law region (30 < y+ < 60). The u/u0 of the zero-velocity gradient point of HTE are larger than 1.35. The cross-section turbulent kinetic energy structure shows that smaller TKE in the near-wall region is the dominant factor for HTD and larger TKE in the core region is the dominant factor for HTE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
10.00%
发文量
648
审稿时长
32 days
期刊介绍: International Communications in Heat and Mass Transfer serves as a world forum for the rapid dissemination of new ideas, new measurement techniques, preliminary findings of ongoing investigations, discussions, and criticisms in the field of heat and mass transfer. Two types of manuscript will be considered for publication: communications (short reports of new work or discussions of work which has already been published) and summaries (abstracts of reports, theses or manuscripts which are too long for publication in full). Together with its companion publication, International Journal of Heat and Mass Transfer, with which it shares the same Board of Editors, this journal is read by research workers and engineers throughout the world.
期刊最新文献
A new approach for heat transfer coefficient determination in triply periodic minimal surface-based heat exchangers Experimental study of the thermal performance of a new type of PV roof Modeling of the evaporation process of a pair of sessile droplets using a point source model (PSM) Heat transfer characterization of waste heat recovery heat exchanger based on flexible hybrid triply periodic minimal surfaces (TPMS) Numerical study on the synergistic effects of ultrasonic transducers and nano-enhanced phase change material in CPU thermal management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1