调查学生重排电路图的方法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-06-28 DOI:10.1109/TE.2024.3410375
Leah M. Ridgway;Tom Cox
{"title":"调查学生重排电路图的方法","authors":"Leah M. Ridgway;Tom Cox","doi":"10.1109/TE.2024.3410375","DOIUrl":null,"url":null,"abstract":"Contribution: This study uses a qualitative research method to analyze interviews where participants simplified an electric circuit while explaining their thought process.Background: Rearranging circuit diagrams is a fundamental skill in electrical and electronic engineering, yet students can struggle with unfamiliar configurations. Current research in the discipline is often quantitative, centered on conceptual understanding. By using a qualitative method, the process of “How” students interact with circuit diagrams is investigated. Research Question: How do students approach circuit diagram simplifications? Methodology: 15-min individual discussions with ten participants (undergraduate years 1–4) simplifying an unconventionally presented circuit diagram were recorded. Reflexive thematic analysis was used to identify common themes. Findings: 1) Participants initially rely upon pattern recognition to solve circuit problems before applying other analysis techniques; 2) two rearrangement methods were identified: “component focused,” where combinations of components are grouped and then connected together, and “ground focused” where components in the circuit are related to ground and then connected together; 3) students using a ground focused strategy were less hesitant in their circuit rearrangement process; and 4) students broadly used mechanicalistic methods of error checking, selecting software tools rather than applying conceptual understanding.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10577445","citationCount":"0","resultStr":"{\"title\":\"Investigating Student Approaches to Rearranging Circuit Diagrams\",\"authors\":\"Leah M. Ridgway;Tom Cox\",\"doi\":\"10.1109/TE.2024.3410375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contribution: This study uses a qualitative research method to analyze interviews where participants simplified an electric circuit while explaining their thought process.Background: Rearranging circuit diagrams is a fundamental skill in electrical and electronic engineering, yet students can struggle with unfamiliar configurations. Current research in the discipline is often quantitative, centered on conceptual understanding. By using a qualitative method, the process of “How” students interact with circuit diagrams is investigated. Research Question: How do students approach circuit diagram simplifications? Methodology: 15-min individual discussions with ten participants (undergraduate years 1–4) simplifying an unconventionally presented circuit diagram were recorded. Reflexive thematic analysis was used to identify common themes. Findings: 1) Participants initially rely upon pattern recognition to solve circuit problems before applying other analysis techniques; 2) two rearrangement methods were identified: “component focused,” where combinations of components are grouped and then connected together, and “ground focused” where components in the circuit are related to ground and then connected together; 3) students using a ground focused strategy were less hesitant in their circuit rearrangement process; and 4) students broadly used mechanicalistic methods of error checking, selecting software tools rather than applying conceptual understanding.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10577445\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10577445/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10577445/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

贡献:本研究采用定性研究方法,对参与者在解释其思维过程时简化电路的访谈进行分析:重新排列电路图是电气和电子工程学的一项基本技能,但学生在面对不熟悉的配置时可能会感到吃力。目前该学科的研究通常以概念理解为中心进行定量研究。本研究采用定性方法,调查学生 "如何 "与电路图互动的过程。研究问题学生如何处理电路图简化问题?研究方法:记录十位参与者(本科 1-4 年级)简化非传统电路图的 15 分钟个人讨论。采用反思性主题分析法确定共同主题。研究结果1) 在应用其他分析技术之前,参与者最初依靠模式识别来解决电路问题;2) 确定了两种重新排列方法:"3) 使用 "接地 "策略的学生在电路重新排列过程中不那么犹豫不决;以及 4) 学生广泛使用机械方法检查错误,选择软件工具,而不是应用概念理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating Student Approaches to Rearranging Circuit Diagrams
Contribution: This study uses a qualitative research method to analyze interviews where participants simplified an electric circuit while explaining their thought process.Background: Rearranging circuit diagrams is a fundamental skill in electrical and electronic engineering, yet students can struggle with unfamiliar configurations. Current research in the discipline is often quantitative, centered on conceptual understanding. By using a qualitative method, the process of “How” students interact with circuit diagrams is investigated. Research Question: How do students approach circuit diagram simplifications? Methodology: 15-min individual discussions with ten participants (undergraduate years 1–4) simplifying an unconventionally presented circuit diagram were recorded. Reflexive thematic analysis was used to identify common themes. Findings: 1) Participants initially rely upon pattern recognition to solve circuit problems before applying other analysis techniques; 2) two rearrangement methods were identified: “component focused,” where combinations of components are grouped and then connected together, and “ground focused” where components in the circuit are related to ground and then connected together; 3) students using a ground focused strategy were less hesitant in their circuit rearrangement process; and 4) students broadly used mechanicalistic methods of error checking, selecting software tools rather than applying conceptual understanding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1