{"title":"调查学生重排电路图的方法","authors":"Leah M. Ridgway;Tom Cox","doi":"10.1109/TE.2024.3410375","DOIUrl":null,"url":null,"abstract":"Contribution: This study uses a qualitative research method to analyze interviews where participants simplified an electric circuit while explaining their thought process.Background: Rearranging circuit diagrams is a fundamental skill in electrical and electronic engineering, yet students can struggle with unfamiliar configurations. Current research in the discipline is often quantitative, centered on conceptual understanding. By using a qualitative method, the process of “How” students interact with circuit diagrams is investigated. Research Question: How do students approach circuit diagram simplifications? Methodology: 15-min individual discussions with ten participants (undergraduate years 1–4) simplifying an unconventionally presented circuit diagram were recorded. Reflexive thematic analysis was used to identify common themes. Findings: 1) Participants initially rely upon pattern recognition to solve circuit problems before applying other analysis techniques; 2) two rearrangement methods were identified: “component focused,” where combinations of components are grouped and then connected together, and “ground focused” where components in the circuit are related to ground and then connected together; 3) students using a ground focused strategy were less hesitant in their circuit rearrangement process; and 4) students broadly used mechanicalistic methods of error checking, selecting software tools rather than applying conceptual understanding.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10577445","citationCount":"0","resultStr":"{\"title\":\"Investigating Student Approaches to Rearranging Circuit Diagrams\",\"authors\":\"Leah M. Ridgway;Tom Cox\",\"doi\":\"10.1109/TE.2024.3410375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contribution: This study uses a qualitative research method to analyze interviews where participants simplified an electric circuit while explaining their thought process.Background: Rearranging circuit diagrams is a fundamental skill in electrical and electronic engineering, yet students can struggle with unfamiliar configurations. Current research in the discipline is often quantitative, centered on conceptual understanding. By using a qualitative method, the process of “How” students interact with circuit diagrams is investigated. Research Question: How do students approach circuit diagram simplifications? Methodology: 15-min individual discussions with ten participants (undergraduate years 1–4) simplifying an unconventionally presented circuit diagram were recorded. Reflexive thematic analysis was used to identify common themes. Findings: 1) Participants initially rely upon pattern recognition to solve circuit problems before applying other analysis techniques; 2) two rearrangement methods were identified: “component focused,” where combinations of components are grouped and then connected together, and “ground focused” where components in the circuit are related to ground and then connected together; 3) students using a ground focused strategy were less hesitant in their circuit rearrangement process; and 4) students broadly used mechanicalistic methods of error checking, selecting software tools rather than applying conceptual understanding.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10577445\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10577445/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10577445/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Investigating Student Approaches to Rearranging Circuit Diagrams
Contribution: This study uses a qualitative research method to analyze interviews where participants simplified an electric circuit while explaining their thought process.Background: Rearranging circuit diagrams is a fundamental skill in electrical and electronic engineering, yet students can struggle with unfamiliar configurations. Current research in the discipline is often quantitative, centered on conceptual understanding. By using a qualitative method, the process of “How” students interact with circuit diagrams is investigated. Research Question: How do students approach circuit diagram simplifications? Methodology: 15-min individual discussions with ten participants (undergraduate years 1–4) simplifying an unconventionally presented circuit diagram were recorded. Reflexive thematic analysis was used to identify common themes. Findings: 1) Participants initially rely upon pattern recognition to solve circuit problems before applying other analysis techniques; 2) two rearrangement methods were identified: “component focused,” where combinations of components are grouped and then connected together, and “ground focused” where components in the circuit are related to ground and then connected together; 3) students using a ground focused strategy were less hesitant in their circuit rearrangement process; and 4) students broadly used mechanicalistic methods of error checking, selecting software tools rather than applying conceptual understanding.