新西兰山坡恢复种植区土壤碳的空间变异性

IF 1.2 4区 农林科学 Q4 SOIL SCIENCE Soil Research Pub Date : 2024-06-27 DOI:10.1071/sr24012
Molly Katharine D’Ath, Katarzyna Sila-Nowicka, Luitgard Schwendenmann
{"title":"新西兰山坡恢复种植区土壤碳的空间变异性","authors":"Molly Katharine D’Ath, Katarzyna Sila-Nowicka, Luitgard Schwendenmann","doi":"10.1071/sr24012","DOIUrl":null,"url":null,"abstract":"<strong> Context</strong><p>Forest restoration has been adopted by governments and local communities across the globe to restore ecological functions and as a measure to mitigate climate change.</p><strong> Aims</strong><p>This study investigated the spatial variation in landscape, vegetation, soil characteristics, and soil carbon storage under young restoration plantings across a hillslope in northern New Zealand.</p><strong> Methods</strong><p>Soil samples (0–10 cm, 10–20 cm, and 20–30 cm) were taken from 121 locations across 5–20-year-old restoration plantings, remnant and regenerating bush and pasture. Samples were analysed for bulk density, pH, and soil carbon concentration and soil carbon stocks were calculated. Ordinary kriging and multiscale geographically weighted regression (MGWR) were used to predict and explain soil carbon stocks across the landscape.</p><strong> Key results</strong><p>Soil carbon stocks (0–10 cm depth) across the study area ranged from 1.9 to 7.1 kg m<sup>−2</sup>. Spatial analysis revealed that elevation, slope, stem density, bulk density, and pH had a significant effect on the magnitude and distribution of soil carbon stocks.</p><strong> Conclusions and implications</strong><p>This study has shown that topography had a strong effect on soil carbon stocks across the young restoration plantings. The outcome of this study highlights the importance of taking landscape and soil characteristics into account when planning a forest restoration project.</p>","PeriodicalId":21818,"journal":{"name":"Soil Research","volume":"85 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial variability of soil carbon across a hillslope restoration planting in New Zealand\",\"authors\":\"Molly Katharine D’Ath, Katarzyna Sila-Nowicka, Luitgard Schwendenmann\",\"doi\":\"10.1071/sr24012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong> Context</strong><p>Forest restoration has been adopted by governments and local communities across the globe to restore ecological functions and as a measure to mitigate climate change.</p><strong> Aims</strong><p>This study investigated the spatial variation in landscape, vegetation, soil characteristics, and soil carbon storage under young restoration plantings across a hillslope in northern New Zealand.</p><strong> Methods</strong><p>Soil samples (0–10 cm, 10–20 cm, and 20–30 cm) were taken from 121 locations across 5–20-year-old restoration plantings, remnant and regenerating bush and pasture. Samples were analysed for bulk density, pH, and soil carbon concentration and soil carbon stocks were calculated. Ordinary kriging and multiscale geographically weighted regression (MGWR) were used to predict and explain soil carbon stocks across the landscape.</p><strong> Key results</strong><p>Soil carbon stocks (0–10 cm depth) across the study area ranged from 1.9 to 7.1 kg m<sup>−2</sup>. Spatial analysis revealed that elevation, slope, stem density, bulk density, and pH had a significant effect on the magnitude and distribution of soil carbon stocks.</p><strong> Conclusions and implications</strong><p>This study has shown that topography had a strong effect on soil carbon stocks across the young restoration plantings. The outcome of this study highlights the importance of taking landscape and soil characteristics into account when planning a forest restoration project.</p>\",\"PeriodicalId\":21818,\"journal\":{\"name\":\"Soil Research\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1071/sr24012\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1071/sr24012","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

背景全球各地的政府和当地社区都在采用森林恢复来恢复生态功能,并将其作为减缓气候变化的一项措施。目的本研究调查了新西兰北部山坡上幼林恢复种植下的景观、植被、土壤特性和土壤碳储量的空间变化。方法在121个地点采集了土壤样本(0-10厘米、10-20厘米和20-30厘米),这些样本分布在有5-20年树龄的恢复植被、残留和再生灌木丛及牧场中。对样本的容重、pH 值和土壤碳浓度进行了分析,并计算了土壤碳储量。采用普通克里金法和多尺度地理加权回归法(MGWR)预测和解释整个景观的土壤碳储量。主要结果整个研究区域的土壤碳储量(0-10 厘米深)从 1.9 kg m-2 到 7.1 kg m-2 不等。空间分析表明,海拔、坡度、茎杆密度、容重和 pH 值对土壤碳储量的大小和分布有显著影响。结论与启示这项研究表明,地形对幼苗恢复种植区的土壤碳储量有很大影响。该研究结果突出了在规划森林恢复项目时考虑地形和土壤特性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial variability of soil carbon across a hillslope restoration planting in New Zealand
Context

Forest restoration has been adopted by governments and local communities across the globe to restore ecological functions and as a measure to mitigate climate change.

Aims

This study investigated the spatial variation in landscape, vegetation, soil characteristics, and soil carbon storage under young restoration plantings across a hillslope in northern New Zealand.

Methods

Soil samples (0–10 cm, 10–20 cm, and 20–30 cm) were taken from 121 locations across 5–20-year-old restoration plantings, remnant and regenerating bush and pasture. Samples were analysed for bulk density, pH, and soil carbon concentration and soil carbon stocks were calculated. Ordinary kriging and multiscale geographically weighted regression (MGWR) were used to predict and explain soil carbon stocks across the landscape.

Key results

Soil carbon stocks (0–10 cm depth) across the study area ranged from 1.9 to 7.1 kg m−2. Spatial analysis revealed that elevation, slope, stem density, bulk density, and pH had a significant effect on the magnitude and distribution of soil carbon stocks.

Conclusions and implications

This study has shown that topography had a strong effect on soil carbon stocks across the young restoration plantings. The outcome of this study highlights the importance of taking landscape and soil characteristics into account when planning a forest restoration project.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soil Research
Soil Research SOIL SCIENCE-
CiteScore
3.20
自引率
6.20%
发文量
35
审稿时长
4.5 months
期刊介绍: Soil Research (formerly known as Australian Journal of Soil Research) is an international journal that aims to rapidly publish high-quality, novel research about fundamental and applied aspects of soil science. As well as publishing in traditional aspects of soil biology, soil physics and soil chemistry across terrestrial ecosystems, the journal welcomes manuscripts dealing with wider interactions of soils with the environment. Soil Research is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
期刊最新文献
Gypsum form and rate can affect soil physicochemical properties and crop productivity in soils of low electrical conductivity that have been enriched by sodium due to supplementary irrigation Analysis of soil erosion dynamics and its driving factors in the Qilian Mountains of Qingdong Modified fungal diversity in dense clay subsoils after deep-banding organic substrate Effects of wetting and drying alternation on the shear properties of root-loess composites Spatial and temporal distribution and environmental determinants of freeze-thaw erosion intensity in Qiangtang grasslands, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1