{"title":"从多源遥感图像中自动检测滑坡事件:YOLO 算法的性能评估和分析","authors":"Naveen Chandra, Himadri Vaidya","doi":"10.1007/s12040-024-02327-x","DOIUrl":null,"url":null,"abstract":"<p>Landslides are among the most dangerous and catastrophic natural hazards with countless concerns. In disaster rescue operations, fast and precise identification of landslides is necessary for timely and effective preventive actions. The landslide risk is anticipated to be reduced through their prediction, monitoring, and accurate detection using remote sensing technology. Moreover, deep learning algorithms have shown excellent improvement in various remote sensing applications. Recent scientific and intelligent technological innovations are needed to be applied to disaster management and assessment, particularly landslides. Therefore, this study aims to extract the landslide hazard information from multiple data sources, i.e., satellite and unmanned aerial vehicle (UAV) images, using a single staged object detection model, i.e., YOLOv5, YOLOv6, YOLOv7, and YOLOv8. The data from distinct platforms are utilized to infer the synergies between them. The results of each database are evaluated quantitatively using standard methods, i.e., precision, recall, <i>f</i>-score, and mean average precision, whereas visual analysis of results is conducted for qualitative assessment. Based on the experimental results, the highest <i>f</i>-score is represented by YOLOv7 (0.995) and YOLOv5 (0.921) for satellite and UAV-based data, respectively. The quantitative results are further compared with previous research work to exhibit the novelty and competence of the proposed research. Our work demonstrates the application and feasibility of the YOLO model in landslide information extraction for quick hazard recovery operations.</p>","PeriodicalId":15609,"journal":{"name":"Journal of Earth System Science","volume":"25 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated detection of landslide events from multi-source remote sensing imagery: Performance evaluation and analysis of YOLO algorithms\",\"authors\":\"Naveen Chandra, Himadri Vaidya\",\"doi\":\"10.1007/s12040-024-02327-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Landslides are among the most dangerous and catastrophic natural hazards with countless concerns. In disaster rescue operations, fast and precise identification of landslides is necessary for timely and effective preventive actions. The landslide risk is anticipated to be reduced through their prediction, monitoring, and accurate detection using remote sensing technology. Moreover, deep learning algorithms have shown excellent improvement in various remote sensing applications. Recent scientific and intelligent technological innovations are needed to be applied to disaster management and assessment, particularly landslides. Therefore, this study aims to extract the landslide hazard information from multiple data sources, i.e., satellite and unmanned aerial vehicle (UAV) images, using a single staged object detection model, i.e., YOLOv5, YOLOv6, YOLOv7, and YOLOv8. The data from distinct platforms are utilized to infer the synergies between them. The results of each database are evaluated quantitatively using standard methods, i.e., precision, recall, <i>f</i>-score, and mean average precision, whereas visual analysis of results is conducted for qualitative assessment. Based on the experimental results, the highest <i>f</i>-score is represented by YOLOv7 (0.995) and YOLOv5 (0.921) for satellite and UAV-based data, respectively. The quantitative results are further compared with previous research work to exhibit the novelty and competence of the proposed research. Our work demonstrates the application and feasibility of the YOLO model in landslide information extraction for quick hazard recovery operations.</p>\",\"PeriodicalId\":15609,\"journal\":{\"name\":\"Journal of Earth System Science\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Earth System Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12040-024-02327-x\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth System Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12040-024-02327-x","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Automated detection of landslide events from multi-source remote sensing imagery: Performance evaluation and analysis of YOLO algorithms
Landslides are among the most dangerous and catastrophic natural hazards with countless concerns. In disaster rescue operations, fast and precise identification of landslides is necessary for timely and effective preventive actions. The landslide risk is anticipated to be reduced through their prediction, monitoring, and accurate detection using remote sensing technology. Moreover, deep learning algorithms have shown excellent improvement in various remote sensing applications. Recent scientific and intelligent technological innovations are needed to be applied to disaster management and assessment, particularly landslides. Therefore, this study aims to extract the landslide hazard information from multiple data sources, i.e., satellite and unmanned aerial vehicle (UAV) images, using a single staged object detection model, i.e., YOLOv5, YOLOv6, YOLOv7, and YOLOv8. The data from distinct platforms are utilized to infer the synergies between them. The results of each database are evaluated quantitatively using standard methods, i.e., precision, recall, f-score, and mean average precision, whereas visual analysis of results is conducted for qualitative assessment. Based on the experimental results, the highest f-score is represented by YOLOv7 (0.995) and YOLOv5 (0.921) for satellite and UAV-based data, respectively. The quantitative results are further compared with previous research work to exhibit the novelty and competence of the proposed research. Our work demonstrates the application and feasibility of the YOLO model in landslide information extraction for quick hazard recovery operations.
期刊介绍:
The Journal of Earth System Science, an International Journal, was earlier a part of the Proceedings of the Indian Academy of Sciences – Section A begun in 1934, and later split in 1978 into theme journals. This journal was published as Proceedings – Earth and Planetary Sciences since 1978, and in 2005 was renamed ‘Journal of Earth System Science’.
The journal is highly inter-disciplinary and publishes scholarly research – new data, ideas, and conceptual advances – in Earth System Science. The focus is on the evolution of the Earth as a system: manuscripts describing changes of anthropogenic origin in a limited region are not considered unless they go beyond describing the changes to include an analysis of earth-system processes. The journal''s scope includes the solid earth (geosphere), the atmosphere, the hydrosphere (including cryosphere), and the biosphere; it also addresses related aspects of planetary and space sciences. Contributions pertaining to the Indian sub- continent and the surrounding Indian-Ocean region are particularly welcome. Given that a large number of manuscripts report either observations or model results for a limited domain, manuscripts intended for publication in JESS are expected to fulfill at least one of the following three criteria.
The data should be of relevance and should be of statistically significant size and from a region from where such data are sparse. If the data are from a well-sampled region, the data size should be considerable and advance our knowledge of the region.
A model study is carried out to explain observations reported either in the same manuscript or in the literature.
The analysis, whether of data or with models, is novel and the inferences advance the current knowledge.