{"title":"阐明涂层材料在喷雾干燥法微胶囊化大麻籽油过程中的影响:理化属性、氧化稳定性和热性能的综合分析","authors":"Kutlu Cevik, Hasan Yalcin, Yusuf Konca","doi":"10.1007/s11483-024-09859-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, it was aimed to investigate the effect of different coating materials on the microencapsulation of hempseed oil by spray drying. For this purpose, hempseed oil emulsions were prepared with skimmed milk powder (SMP), maltodextrin (MD), and whey protein concentrate (WPC). The properties of these emulsions including rheological, zeta potential, and physicochemical properties were analyzed. Then, hempseed oil microcapsules were produced using spray drying. The effect of the different coating materials on spray-dried hempseed oil capsules was evaluated in terms of microencapsulation yield, surface oil, microencapsulation efficiency, oxidation stability, and physicochemical properties. The combinations of SMP (50.58%) or WPC (56.21%) with MD significantly enhanced the microencapsulation yield. The highest microencapsulation efficiency (92.16%) was obtained in the microcapsule with SMP: MD. This microcapsule with SMP: MD also showed higher oxidative stability compared to other microcapsules. Besides, this combination (SMP: MD) effectively protected the hempseed oil against oxidation during the Schaal oven test. Additionally, spray-dried hempseed oil microcapsules were characterized using FT-IR, TGA, and SEM. It was determined that using MD as a coating material improved the thermal stability of the microcapsules. As a result, it was concluded that the SMP: MD as a coating material was suitable for the microencapsulation of hempseed oil.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"19 3","pages":"795 - 805"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11483-024-09859-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Elucidating the Influence of Coating Materials in the Microencapsulation Process of Hempseed Oil Via Spray Drying: A Comprehensive Analysis of Physicochemical Attributes, Oxidation Stability, and Thermal Properties\",\"authors\":\"Kutlu Cevik, Hasan Yalcin, Yusuf Konca\",\"doi\":\"10.1007/s11483-024-09859-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, it was aimed to investigate the effect of different coating materials on the microencapsulation of hempseed oil by spray drying. For this purpose, hempseed oil emulsions were prepared with skimmed milk powder (SMP), maltodextrin (MD), and whey protein concentrate (WPC). The properties of these emulsions including rheological, zeta potential, and physicochemical properties were analyzed. Then, hempseed oil microcapsules were produced using spray drying. The effect of the different coating materials on spray-dried hempseed oil capsules was evaluated in terms of microencapsulation yield, surface oil, microencapsulation efficiency, oxidation stability, and physicochemical properties. The combinations of SMP (50.58%) or WPC (56.21%) with MD significantly enhanced the microencapsulation yield. The highest microencapsulation efficiency (92.16%) was obtained in the microcapsule with SMP: MD. This microcapsule with SMP: MD also showed higher oxidative stability compared to other microcapsules. Besides, this combination (SMP: MD) effectively protected the hempseed oil against oxidation during the Schaal oven test. Additionally, spray-dried hempseed oil microcapsules were characterized using FT-IR, TGA, and SEM. It was determined that using MD as a coating material improved the thermal stability of the microcapsules. As a result, it was concluded that the SMP: MD as a coating material was suitable for the microencapsulation of hempseed oil.</p></div>\",\"PeriodicalId\":564,\"journal\":{\"name\":\"Food Biophysics\",\"volume\":\"19 3\",\"pages\":\"795 - 805\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11483-024-09859-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Biophysics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11483-024-09859-1\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-024-09859-1","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Elucidating the Influence of Coating Materials in the Microencapsulation Process of Hempseed Oil Via Spray Drying: A Comprehensive Analysis of Physicochemical Attributes, Oxidation Stability, and Thermal Properties
In this study, it was aimed to investigate the effect of different coating materials on the microencapsulation of hempseed oil by spray drying. For this purpose, hempseed oil emulsions were prepared with skimmed milk powder (SMP), maltodextrin (MD), and whey protein concentrate (WPC). The properties of these emulsions including rheological, zeta potential, and physicochemical properties were analyzed. Then, hempseed oil microcapsules were produced using spray drying. The effect of the different coating materials on spray-dried hempseed oil capsules was evaluated in terms of microencapsulation yield, surface oil, microencapsulation efficiency, oxidation stability, and physicochemical properties. The combinations of SMP (50.58%) or WPC (56.21%) with MD significantly enhanced the microencapsulation yield. The highest microencapsulation efficiency (92.16%) was obtained in the microcapsule with SMP: MD. This microcapsule with SMP: MD also showed higher oxidative stability compared to other microcapsules. Besides, this combination (SMP: MD) effectively protected the hempseed oil against oxidation during the Schaal oven test. Additionally, spray-dried hempseed oil microcapsules were characterized using FT-IR, TGA, and SEM. It was determined that using MD as a coating material improved the thermal stability of the microcapsules. As a result, it was concluded that the SMP: MD as a coating material was suitable for the microencapsulation of hempseed oil.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.