通过工程微生物系统生产黄酮类化合物的最新进展

IF 2.5 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology and Bioprocess Engineering Pub Date : 2024-06-27 DOI:10.1007/s12257-024-00125-2
Yunhee Hwang, Myung Hyun Noh, Gyoo Yeol Jung
{"title":"通过工程微生物系统生产黄酮类化合物的最新进展","authors":"Yunhee Hwang, Myung Hyun Noh, Gyoo Yeol Jung","doi":"10.1007/s12257-024-00125-2","DOIUrl":null,"url":null,"abstract":"<p>Flavonoids are a class of polyphenolic compounds found in plants that offer extensive health benefits and have applications in the pharmaceutical, cosmetic, and food industries. Currently, flavonoid production largely depends on plant extraction methods, which face limitations owing to low yields and seasonal and environmental impacts. To address these issues, the potential of microbial fermentation, which leverages advances in metabolic engineering and genetic tools, has been discussed as an innovative alternative to overcome these challenges, thus offering an environmentally friendly and sustainable approach to flavonoid production. However, the integration of complex biosynthesis pathways into microbial systems presents challenges such as the inefficient expression of plant-derived genes, metabolic conflicts, and toxicity or feedback inhibition by accumulated flavonoids within the microbial cells. This comprehensive review highlights recent advancements in engineering strategies to address these challenges, focusing on biotransformation, single-strain fermentation, and co-culture systems, each with its own unique characteristics and potential for optimizing flavonoid production in a cost-effective and scalable manner.</p>","PeriodicalId":8936,"journal":{"name":"Biotechnology and Bioprocess Engineering","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advancements in flavonoid production through engineering microbial systems\",\"authors\":\"Yunhee Hwang, Myung Hyun Noh, Gyoo Yeol Jung\",\"doi\":\"10.1007/s12257-024-00125-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flavonoids are a class of polyphenolic compounds found in plants that offer extensive health benefits and have applications in the pharmaceutical, cosmetic, and food industries. Currently, flavonoid production largely depends on plant extraction methods, which face limitations owing to low yields and seasonal and environmental impacts. To address these issues, the potential of microbial fermentation, which leverages advances in metabolic engineering and genetic tools, has been discussed as an innovative alternative to overcome these challenges, thus offering an environmentally friendly and sustainable approach to flavonoid production. However, the integration of complex biosynthesis pathways into microbial systems presents challenges such as the inefficient expression of plant-derived genes, metabolic conflicts, and toxicity or feedback inhibition by accumulated flavonoids within the microbial cells. This comprehensive review highlights recent advancements in engineering strategies to address these challenges, focusing on biotransformation, single-strain fermentation, and co-culture systems, each with its own unique characteristics and potential for optimizing flavonoid production in a cost-effective and scalable manner.</p>\",\"PeriodicalId\":8936,\"journal\":{\"name\":\"Biotechnology and Bioprocess Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioprocess Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12257-024-00125-2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioprocess Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12257-024-00125-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

类黄酮是一类存在于植物中的多酚化合物,具有广泛的保健功效,可应用于制药、化妆品和食品行业。目前,黄酮类化合物的生产主要依赖于植物提取方法,这种方法由于产量低、受季节和环境影响而受到限制。为了解决这些问题,人们讨论了微生物发酵的潜力,认为微生物发酵利用了代谢工程和遗传工具的进步,是克服这些挑战的创新替代方法,从而为黄酮类化合物的生产提供了一种环境友好型和可持续发展的方法。然而,将复杂的生物合成途径整合到微生物系统中会带来一些挑战,如植物源基因的低效表达、代谢冲突以及微生物细胞内积累的类黄酮的毒性或反馈抑制作用。本综述重点介绍了应对这些挑战的工程策略的最新进展,重点关注生物转化、单菌种发酵和共培养系统,每种系统都有其独特的特点和潜力,可以以具有成本效益和可扩展的方式优化类黄酮的生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent advancements in flavonoid production through engineering microbial systems

Flavonoids are a class of polyphenolic compounds found in plants that offer extensive health benefits and have applications in the pharmaceutical, cosmetic, and food industries. Currently, flavonoid production largely depends on plant extraction methods, which face limitations owing to low yields and seasonal and environmental impacts. To address these issues, the potential of microbial fermentation, which leverages advances in metabolic engineering and genetic tools, has been discussed as an innovative alternative to overcome these challenges, thus offering an environmentally friendly and sustainable approach to flavonoid production. However, the integration of complex biosynthesis pathways into microbial systems presents challenges such as the inefficient expression of plant-derived genes, metabolic conflicts, and toxicity or feedback inhibition by accumulated flavonoids within the microbial cells. This comprehensive review highlights recent advancements in engineering strategies to address these challenges, focusing on biotransformation, single-strain fermentation, and co-culture systems, each with its own unique characteristics and potential for optimizing flavonoid production in a cost-effective and scalable manner.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biotechnology and Bioprocess Engineering
Biotechnology and Bioprocess Engineering 工程技术-生物工程与应用微生物
CiteScore
5.00
自引率
12.50%
发文量
79
审稿时长
3 months
期刊介绍: Biotechnology and Bioprocess Engineering is an international bimonthly journal published by the Korean Society for Biotechnology and Bioengineering. BBE is devoted to the advancement in science and technology in the wide area of biotechnology, bioengineering, and (bio)medical engineering. This includes but is not limited to applied molecular and cell biology, engineered biocatalysis and biotransformation, metabolic engineering and systems biology, bioseparation and bioprocess engineering, cell culture technology, environmental and food biotechnology, pharmaceutics and biopharmaceutics, biomaterials engineering, nanobiotechnology, and biosensor and bioelectronics.
期刊最新文献
Assessing the applicability of tunicate skin-extracted cellulose as a base material for ultrasound gel Fabrication of protein–inorganic biohybrid as an imageable drug delivery system comprising transferrin, green fluorescent protein, and copper phosphate Continuous cell recycling in methylotrophic yeast Pichia pastoris to enhance product yields: a case study with Yarrowia lipolytica lipase Lip2 Sensitive detection of SARS-CoV2 spike antibodies by a paper-based polypyrrole/reduced graphene oxide sensor A neural ordinary differential equation model for predicting the growth of Chinese Hamster Ovary cell in a bioreactor system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1