{"title":"用等几何边界元法解决声散射问题","authors":"Jürgen Dölz, Helmut Harbrecht, Michael Multerer","doi":"10.1007/s00366-024-02013-y","DOIUrl":null,"url":null,"abstract":"<p>We solve acoustic scattering problems by means of the isogeometric boundary integral equation method. In order to avoid spurious modes, we apply the combined field integral equations for either sound-hard scatterers or sound-soft scatterers. These integral equations are discretized by Galerkin’s method, which especially enables the mathematically correct regularization of the hypersingular integral operator. In order to circumvent densely populated system matrices, we employ the isogeometric embedded fast multipole method, which is based on interpolation of the kernel function under consideration on the reference domain, rather than in space. To overcome the prohibitive cost of the potential evaluation in case of many evaluation points, we also accelerate the potential evaluation by a fast multipole method which interpolates in space. The result is a frequency stable algorithm that scales essentially linear in the number of degrees of freedom and potential points. Numerical experiments are performed which show the feasibility and the performance of the approach.</p>","PeriodicalId":11696,"journal":{"name":"Engineering with Computers","volume":"36 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving acoustic scattering problems by the isogeometric boundary element method\",\"authors\":\"Jürgen Dölz, Helmut Harbrecht, Michael Multerer\",\"doi\":\"10.1007/s00366-024-02013-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We solve acoustic scattering problems by means of the isogeometric boundary integral equation method. In order to avoid spurious modes, we apply the combined field integral equations for either sound-hard scatterers or sound-soft scatterers. These integral equations are discretized by Galerkin’s method, which especially enables the mathematically correct regularization of the hypersingular integral operator. In order to circumvent densely populated system matrices, we employ the isogeometric embedded fast multipole method, which is based on interpolation of the kernel function under consideration on the reference domain, rather than in space. To overcome the prohibitive cost of the potential evaluation in case of many evaluation points, we also accelerate the potential evaluation by a fast multipole method which interpolates in space. The result is a frequency stable algorithm that scales essentially linear in the number of degrees of freedom and potential points. Numerical experiments are performed which show the feasibility and the performance of the approach.</p>\",\"PeriodicalId\":11696,\"journal\":{\"name\":\"Engineering with Computers\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering with Computers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00366-024-02013-y\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering with Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00366-024-02013-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Solving acoustic scattering problems by the isogeometric boundary element method
We solve acoustic scattering problems by means of the isogeometric boundary integral equation method. In order to avoid spurious modes, we apply the combined field integral equations for either sound-hard scatterers or sound-soft scatterers. These integral equations are discretized by Galerkin’s method, which especially enables the mathematically correct regularization of the hypersingular integral operator. In order to circumvent densely populated system matrices, we employ the isogeometric embedded fast multipole method, which is based on interpolation of the kernel function under consideration on the reference domain, rather than in space. To overcome the prohibitive cost of the potential evaluation in case of many evaluation points, we also accelerate the potential evaluation by a fast multipole method which interpolates in space. The result is a frequency stable algorithm that scales essentially linear in the number of degrees of freedom and potential points. Numerical experiments are performed which show the feasibility and the performance of the approach.
期刊介绍:
Engineering with Computers is an international journal dedicated to simulation-based engineering. It features original papers and comprehensive reviews on technologies supporting simulation-based engineering, along with demonstrations of operational simulation-based engineering systems. The journal covers various technical areas such as adaptive simulation techniques, engineering databases, CAD geometry integration, mesh generation, parallel simulation methods, simulation frameworks, user interface technologies, and visualization techniques. It also encompasses a wide range of application areas where engineering technologies are applied, spanning from automotive industry applications to medical device design.