Roman M. Mironenko, Olga B. Belskaya, Evgeniya A. Raiskaya, Alexey B. Arbuzov, Olga A. Kokhanovskaya, Olga A. Knyazheva, Vyacheslav L. Yurpalov, Tatyana I. Gulyaeva, Mikhail V. Trenikhin, Vladimir A. Likholobov
{"title":"热处理改变纳米球状碳表面功能对 Pd/NGC 加氢催化剂的形成和性能的影响","authors":"Roman M. Mironenko, Olga B. Belskaya, Evgeniya A. Raiskaya, Alexey B. Arbuzov, Olga A. Kokhanovskaya, Olga A. Knyazheva, Vyacheslav L. Yurpalov, Tatyana I. Gulyaeva, Mikhail V. Trenikhin, Vladimir A. Likholobov","doi":"10.1007/s10562-024-04758-z","DOIUrl":null,"url":null,"abstract":"<div><p>It was established that the surface functionality of nanoglobular carbon (NGC) can be effectively altered by treatment at temperatures of 573 – 1173 K in an inert atmosphere, without affecting the structure and morphology of the material as a whole. The destruction and loss of surface oxygen groups occurs as a result of this treatment, which is accompanied by a decrease in the concentration of paramagnetic centers. At a temperature of 1173 K, a restructuring and “smoothing” of the carbon surface apparently takes place, which is expressed by annealing of defects (sources of EPR signal). It was found that changes in the surface functionality of NGC affect the reducibility of supported palladium precursor and the formation of palladium nanoparticles, without causing changes in palladium dispersion state. The study of the obtained Pd/NGC catalysts in the practically important hydrogenation of 4-nitrobenzoic acid ethyl ester and furfural showed that thermal pre-treatment of the support affects the catalytic performance in these reactions. It is important that varying temperature of such pre-treatment over a fairly wide range, which has a significant impact on the functionality of the support surface, leads to only relatively small changes in the activity and selectivity of the resulting catalysts. In this regard, thermal pre-treatment of carbon support should be considered as an approach to fine tune the performance of carbon-supported palladium catalysts.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":508,"journal":{"name":"Catalysis Letters","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the Surface Functionality of Nanoglobular Carbon Altered by its Thermal Treatment on the Formation and Performance of the Pd/NGC Hydrogenation Catalyst\",\"authors\":\"Roman M. Mironenko, Olga B. Belskaya, Evgeniya A. Raiskaya, Alexey B. Arbuzov, Olga A. Kokhanovskaya, Olga A. Knyazheva, Vyacheslav L. Yurpalov, Tatyana I. Gulyaeva, Mikhail V. Trenikhin, Vladimir A. Likholobov\",\"doi\":\"10.1007/s10562-024-04758-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It was established that the surface functionality of nanoglobular carbon (NGC) can be effectively altered by treatment at temperatures of 573 – 1173 K in an inert atmosphere, without affecting the structure and morphology of the material as a whole. The destruction and loss of surface oxygen groups occurs as a result of this treatment, which is accompanied by a decrease in the concentration of paramagnetic centers. At a temperature of 1173 K, a restructuring and “smoothing” of the carbon surface apparently takes place, which is expressed by annealing of defects (sources of EPR signal). It was found that changes in the surface functionality of NGC affect the reducibility of supported palladium precursor and the formation of palladium nanoparticles, without causing changes in palladium dispersion state. The study of the obtained Pd/NGC catalysts in the practically important hydrogenation of 4-nitrobenzoic acid ethyl ester and furfural showed that thermal pre-treatment of the support affects the catalytic performance in these reactions. It is important that varying temperature of such pre-treatment over a fairly wide range, which has a significant impact on the functionality of the support surface, leads to only relatively small changes in the activity and selectivity of the resulting catalysts. In this regard, thermal pre-treatment of carbon support should be considered as an approach to fine tune the performance of carbon-supported palladium catalysts.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":508,\"journal\":{\"name\":\"Catalysis Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Letters\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10562-024-04758-z\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Letters","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10562-024-04758-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
研究证实,在惰性气氛中,在 573 - 1173 K 的温度下处理纳米球状碳(NGC),可以有效地改变其表面功能,而不会影响材料的整体结构和形态。这种处理方式会导致表面氧基的破坏和损失,同时顺磁中心的浓度也会降低。在 1173 K 的温度下,碳表面显然发生了重组和 "平滑",这表现为缺陷(EPR 信号源)的退火。研究发现,NGC 表面功能的变化会影响支撑钯前驱体的还原性和钯纳米粒子的形成,但不会引起钯分散状态的变化。在对硝基苯甲酸乙酯和糠醛的实际重要加氢反应中对所获得的 Pd/NGC 催化剂进行的研究表明,载体的热预处理会影响这些反应的催化性能。重要的是,在相当大的范围内改变这种预处理的温度(这对载体表面的功能性有重大影响),只会导致所得催化剂的活性和选择性发生相对较小的变化。因此,应将碳载体的热预处理视为微调碳载体钯催化剂性能的一种方法。
Effect of the Surface Functionality of Nanoglobular Carbon Altered by its Thermal Treatment on the Formation and Performance of the Pd/NGC Hydrogenation Catalyst
It was established that the surface functionality of nanoglobular carbon (NGC) can be effectively altered by treatment at temperatures of 573 – 1173 K in an inert atmosphere, without affecting the structure and morphology of the material as a whole. The destruction and loss of surface oxygen groups occurs as a result of this treatment, which is accompanied by a decrease in the concentration of paramagnetic centers. At a temperature of 1173 K, a restructuring and “smoothing” of the carbon surface apparently takes place, which is expressed by annealing of defects (sources of EPR signal). It was found that changes in the surface functionality of NGC affect the reducibility of supported palladium precursor and the formation of palladium nanoparticles, without causing changes in palladium dispersion state. The study of the obtained Pd/NGC catalysts in the practically important hydrogenation of 4-nitrobenzoic acid ethyl ester and furfural showed that thermal pre-treatment of the support affects the catalytic performance in these reactions. It is important that varying temperature of such pre-treatment over a fairly wide range, which has a significant impact on the functionality of the support surface, leads to only relatively small changes in the activity and selectivity of the resulting catalysts. In this regard, thermal pre-treatment of carbon support should be considered as an approach to fine tune the performance of carbon-supported palladium catalysts.
期刊介绍:
Catalysis Letters aim is the rapid publication of outstanding and high-impact original research articles in catalysis. The scope of the journal covers a broad range of topics in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
The high-quality original research articles published in Catalysis Letters are subject to rigorous peer review. Accepted papers are published online first and subsequently in print issues. All contributions must include a graphical abstract. Manuscripts should be written in English and the responsibility lies with the authors to ensure that they are grammatically and linguistically correct. Authors for whom English is not the working language are encouraged to consider using a professional language-editing service before submitting their manuscripts.