{"title":"加速探索高熵合金:计算模拟与实验相结合的协同效应","authors":"Deyu Jiang, Yuhua Li, Liqiang Wang, Lai-Chang Zhang","doi":"10.1002/sstr.202400110","DOIUrl":null,"url":null,"abstract":"High-entropy alloys (HEAs) are novel materials composed of multiple elements with nearly equal concentrations and they exhibit exceptional properties such as high strength, ductility, thermal stability, and corrosion resistance. However, the intricate and diverse structures of HEAs pose significant challenges to understanding and predicting their behavior at different length scales. This review summarizes recent advances in computational simulations and experiments of structure-property relationships in HEAs at the nano/micro scales. Various methods such as first-principles calculations, molecular dynamics simulations, phase diagram calculations, and finite element simulations are discussed for revealing atomic/chemical and crystal structures, defect formation and migration, diffusion and phase transition, phase formation and stability, stress-strain distribution, deformation behavior, and thermodynamic properties of HEAs. Emphasis is placed on the synergistic effects of computational simulations and experiments in terms of validation and complementarity to provide insights into the underlying mechanisms and evolutionary rules of HEAs. Additionally, current challenges and future directions for computational and experimental studies of HEAs are identified, including accuracy, efficiency, and scalability of methods, integration of multiscale and multiphysics models, and exploration of practical applications of HEAs.","PeriodicalId":21841,"journal":{"name":"Small Structures","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating the Exploration of High-Entropy Alloys: Synergistic Effects of Integrating Computational Simulation and Experiments\",\"authors\":\"Deyu Jiang, Yuhua Li, Liqiang Wang, Lai-Chang Zhang\",\"doi\":\"10.1002/sstr.202400110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-entropy alloys (HEAs) are novel materials composed of multiple elements with nearly equal concentrations and they exhibit exceptional properties such as high strength, ductility, thermal stability, and corrosion resistance. However, the intricate and diverse structures of HEAs pose significant challenges to understanding and predicting their behavior at different length scales. This review summarizes recent advances in computational simulations and experiments of structure-property relationships in HEAs at the nano/micro scales. Various methods such as first-principles calculations, molecular dynamics simulations, phase diagram calculations, and finite element simulations are discussed for revealing atomic/chemical and crystal structures, defect formation and migration, diffusion and phase transition, phase formation and stability, stress-strain distribution, deformation behavior, and thermodynamic properties of HEAs. Emphasis is placed on the synergistic effects of computational simulations and experiments in terms of validation and complementarity to provide insights into the underlying mechanisms and evolutionary rules of HEAs. Additionally, current challenges and future directions for computational and experimental studies of HEAs are identified, including accuracy, efficiency, and scalability of methods, integration of multiscale and multiphysics models, and exploration of practical applications of HEAs.\",\"PeriodicalId\":21841,\"journal\":{\"name\":\"Small Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sstr.202400110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sstr.202400110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
高熵合金(HEAs)是一种新型材料,由浓度几乎相等的多种元素组成,具有高强度、延展性、热稳定性和耐腐蚀性等优异性能。然而,HEAs 复杂多样的结构给理解和预测其在不同长度尺度上的行为带来了巨大挑战。本综述总结了在纳米/微米尺度上对 HEAs 结构-性能关系进行计算模拟和实验的最新进展。文章讨论了第一原理计算、分子动力学模拟、相图计算和有限元模拟等各种方法,以揭示 HEAs 的原子/化学和晶体结构、缺陷形成和迁移、扩散和相变、相形成和稳定性、应力应变分布、变形行为和热力学性质。重点是计算模拟和实验在验证和互补方面的协同作用,以便深入了解 HEAs 的内在机制和演化规律。此外,还确定了 HEA 计算和实验研究的当前挑战和未来方向,包括方法的准确性、效率和可扩展性,多尺度和多物理模型的集成,以及 HEA 的实际应用探索。
Accelerating the Exploration of High-Entropy Alloys: Synergistic Effects of Integrating Computational Simulation and Experiments
High-entropy alloys (HEAs) are novel materials composed of multiple elements with nearly equal concentrations and they exhibit exceptional properties such as high strength, ductility, thermal stability, and corrosion resistance. However, the intricate and diverse structures of HEAs pose significant challenges to understanding and predicting their behavior at different length scales. This review summarizes recent advances in computational simulations and experiments of structure-property relationships in HEAs at the nano/micro scales. Various methods such as first-principles calculations, molecular dynamics simulations, phase diagram calculations, and finite element simulations are discussed for revealing atomic/chemical and crystal structures, defect formation and migration, diffusion and phase transition, phase formation and stability, stress-strain distribution, deformation behavior, and thermodynamic properties of HEAs. Emphasis is placed on the synergistic effects of computational simulations and experiments in terms of validation and complementarity to provide insights into the underlying mechanisms and evolutionary rules of HEAs. Additionally, current challenges and future directions for computational and experimental studies of HEAs are identified, including accuracy, efficiency, and scalability of methods, integration of multiscale and multiphysics models, and exploration of practical applications of HEAs.