Haitao Du;Yu Zhang;Junmin Zhou;Jiaxiang Chen;Wenbo Ye;Xu Zhang;Qifeng Lyu;Hongzhi Wang;Kei May Lau;Xinbo Zou
{"title":"采用氮化镓纳米线 ni-i-n 二极管的高性能紫外机器视觉系统","authors":"Haitao Du;Yu Zhang;Junmin Zhou;Jiaxiang Chen;Wenbo Ye;Xu Zhang;Qifeng Lyu;Hongzhi Wang;Kei May Lau;Xinbo Zou","doi":"10.1109/TNANO.2024.3416509","DOIUrl":null,"url":null,"abstract":"Machine vision as an essential component of artificial intelligence poses a significant influence on dimension measurement, quality control, autonomous driving, and so on. In this study, a high-performance ultraviolet (UV) imaging and detection system enabled by Gallium Nitride (GaN) nanowire (NW) n-i-n photodetector (PD) is presented. Based on supreme optoelectronic properties of the NW, including high responsivity of 5098 A/W, a low dark current of 4.88 pA and a photo-to-dark current ratio of 1223, machine vision system composed of a GaN NW array could achieve an accuracy of 96.21%. Furthermore, feasibility of artificial neural network (ANN) and convolutional neural network (CNN) in such a machine vision system is discussed, featuring dim and noisy environment. The visualization process shows that the superiority of CNN over ANN in image recognition is attributed to the capability of extracting spatial information and characteristics. The research results provide important insight into the development of both sensors and algorithms for machine vision systems based on GaN NW PD, inspiring further investigation into UV image detection and other areas of artificial intelligence.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"529-534"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GaN Nanowire n-i-n Diode Enabled High-Performance UV Machine Vision System\",\"authors\":\"Haitao Du;Yu Zhang;Junmin Zhou;Jiaxiang Chen;Wenbo Ye;Xu Zhang;Qifeng Lyu;Hongzhi Wang;Kei May Lau;Xinbo Zou\",\"doi\":\"10.1109/TNANO.2024.3416509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine vision as an essential component of artificial intelligence poses a significant influence on dimension measurement, quality control, autonomous driving, and so on. In this study, a high-performance ultraviolet (UV) imaging and detection system enabled by Gallium Nitride (GaN) nanowire (NW) n-i-n photodetector (PD) is presented. Based on supreme optoelectronic properties of the NW, including high responsivity of 5098 A/W, a low dark current of 4.88 pA and a photo-to-dark current ratio of 1223, machine vision system composed of a GaN NW array could achieve an accuracy of 96.21%. Furthermore, feasibility of artificial neural network (ANN) and convolutional neural network (CNN) in such a machine vision system is discussed, featuring dim and noisy environment. The visualization process shows that the superiority of CNN over ANN in image recognition is attributed to the capability of extracting spatial information and characteristics. The research results provide important insight into the development of both sensors and algorithms for machine vision systems based on GaN NW PD, inspiring further investigation into UV image detection and other areas of artificial intelligence.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"23 \",\"pages\":\"529-534\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10564119/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10564119/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
机器视觉作为人工智能的重要组成部分,在尺寸测量、质量控制、自动驾驶等方面具有重要影响。本研究提出了一种由氮化镓(GaN)纳米线(NW)n-i-n 光电探测器(PD)实现的高性能紫外线(UV)成像和检测系统。基于氮化镓纳米线的最高光电特性,包括 5098 A/W 的高响应率、4.88 pA 的低暗电流和 1223 的光暗电流比,由氮化镓纳米线阵列组成的机器视觉系统可实现 96.21% 的精确度。此外,还讨论了人工神经网络(ANN)和卷积神经网络(CNN)在这种机器视觉系统中的可行性。可视化过程表明,在图像识别方面,CNN 优于 ANN 的原因在于其提取空间信息和特征的能力。这些研究成果为基于氮化镓氮化瓦 PD 的机器视觉系统的传感器和算法的开发提供了重要启示,激发了对紫外图像检测和其他人工智能领域的进一步研究。
GaN Nanowire n-i-n Diode Enabled High-Performance UV Machine Vision System
Machine vision as an essential component of artificial intelligence poses a significant influence on dimension measurement, quality control, autonomous driving, and so on. In this study, a high-performance ultraviolet (UV) imaging and detection system enabled by Gallium Nitride (GaN) nanowire (NW) n-i-n photodetector (PD) is presented. Based on supreme optoelectronic properties of the NW, including high responsivity of 5098 A/W, a low dark current of 4.88 pA and a photo-to-dark current ratio of 1223, machine vision system composed of a GaN NW array could achieve an accuracy of 96.21%. Furthermore, feasibility of artificial neural network (ANN) and convolutional neural network (CNN) in such a machine vision system is discussed, featuring dim and noisy environment. The visualization process shows that the superiority of CNN over ANN in image recognition is attributed to the capability of extracting spatial information and characteristics. The research results provide important insight into the development of both sensors and algorithms for machine vision systems based on GaN NW PD, inspiring further investigation into UV image detection and other areas of artificial intelligence.
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.