{"title":"基于石榴石中 Yb3+ 的斯塔克能级的近红外测温仪","authors":"Qixuan Zhang, Jumpei Ueda, Ruilin Zheng, Setsuhisa Tanabe","doi":"10.1002/pssa.202400302","DOIUrl":null,"url":null,"abstract":"A Yb<jats:sup>3+</jats:sup>‐doped Gd<jats:sub>3</jats:sub>Al<jats:sub>2</jats:sub>Ga<jats:sub>3</jats:sub>O<jats:sub>12</jats:sub> garnet (GAGG) Boltzmann thermometer is prepared and studied in this work. Due to the Boltzmann distribution of the population of Stark sublevels of Yb<jats:sup>3+</jats:sup>, the photoluminescence peaks of Yb<jats:sup>3+</jats:sup> in the wavelength range of 950–1000 and 1000–1050 nm exhibit opposite temperature dependencies, which makes the luminescence intensity ratio (LIR) of two Yb<jats:sup>3+</jats:sup> peaks work as a luminescence thermometer with a relative sensitivity of 1.6% K<jats:sup>−1</jats:sup> at 200 K. It is worth nothing that this LIR value still follows the Arrhenius model at temperatures as low as 200 K. In these results, it is suggested that Yb<jats:sup>3+</jats:sup>‐doped GAGG thermometer can achieve high sensitivity for accurate temperature measurements. In addition, the accurate position of various Stark sublevels of Yb<jats:sup>3+</jats:sup> in GAGG is obtained for the first time. In this work, it is confirmed that the Yb<jats:sup>3+</jats:sup>‐doped GAGG thermometer exhibits potential applications in the fields of microelectronics and biology.","PeriodicalId":20074,"journal":{"name":"Physica Status Solidi A-applications and Materials Science","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near‐Infrared Thermometer Based on Stark Energy Levels of Yb3+ in Garnet\",\"authors\":\"Qixuan Zhang, Jumpei Ueda, Ruilin Zheng, Setsuhisa Tanabe\",\"doi\":\"10.1002/pssa.202400302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Yb<jats:sup>3+</jats:sup>‐doped Gd<jats:sub>3</jats:sub>Al<jats:sub>2</jats:sub>Ga<jats:sub>3</jats:sub>O<jats:sub>12</jats:sub> garnet (GAGG) Boltzmann thermometer is prepared and studied in this work. Due to the Boltzmann distribution of the population of Stark sublevels of Yb<jats:sup>3+</jats:sup>, the photoluminescence peaks of Yb<jats:sup>3+</jats:sup> in the wavelength range of 950–1000 and 1000–1050 nm exhibit opposite temperature dependencies, which makes the luminescence intensity ratio (LIR) of two Yb<jats:sup>3+</jats:sup> peaks work as a luminescence thermometer with a relative sensitivity of 1.6% K<jats:sup>−1</jats:sup> at 200 K. It is worth nothing that this LIR value still follows the Arrhenius model at temperatures as low as 200 K. In these results, it is suggested that Yb<jats:sup>3+</jats:sup>‐doped GAGG thermometer can achieve high sensitivity for accurate temperature measurements. In addition, the accurate position of various Stark sublevels of Yb<jats:sup>3+</jats:sup> in GAGG is obtained for the first time. In this work, it is confirmed that the Yb<jats:sup>3+</jats:sup>‐doped GAGG thermometer exhibits potential applications in the fields of microelectronics and biology.\",\"PeriodicalId\":20074,\"journal\":{\"name\":\"Physica Status Solidi A-applications and Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Status Solidi A-applications and Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pssa.202400302\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi A-applications and Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pssa.202400302","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Near‐Infrared Thermometer Based on Stark Energy Levels of Yb3+ in Garnet
A Yb3+‐doped Gd3Al2Ga3O12 garnet (GAGG) Boltzmann thermometer is prepared and studied in this work. Due to the Boltzmann distribution of the population of Stark sublevels of Yb3+, the photoluminescence peaks of Yb3+ in the wavelength range of 950–1000 and 1000–1050 nm exhibit opposite temperature dependencies, which makes the luminescence intensity ratio (LIR) of two Yb3+ peaks work as a luminescence thermometer with a relative sensitivity of 1.6% K−1 at 200 K. It is worth nothing that this LIR value still follows the Arrhenius model at temperatures as low as 200 K. In these results, it is suggested that Yb3+‐doped GAGG thermometer can achieve high sensitivity for accurate temperature measurements. In addition, the accurate position of various Stark sublevels of Yb3+ in GAGG is obtained for the first time. In this work, it is confirmed that the Yb3+‐doped GAGG thermometer exhibits potential applications in the fields of microelectronics and biology.
期刊介绍:
The physica status solidi (pss) journal group is devoted to the thorough peer review and the rapid publication of new and important results in all fields of solid state and materials physics, from basic science to applications and devices. Among the largest and most established international publications, the pss journals publish reviews, letters and original articles, as regular content as well as in special issues and topical sections.