自走质点准周期二维运动的存在性和稳定性

IF 0.7 4区 数学 Q3 MATHEMATICS, APPLIED Japan Journal of Industrial and Applied Mathematics Pub Date : 2024-07-02 DOI:10.1007/s13160-024-00661-7
Kota Ikeda, Hiroyuki Kitahata, Yuki Koyano
{"title":"自走质点准周期二维运动的存在性和稳定性","authors":"Kota Ikeda, Hiroyuki Kitahata, Yuki Koyano","doi":"10.1007/s13160-024-00661-7","DOIUrl":null,"url":null,"abstract":"<p>The mechanism of self-propelled particle motion has attracted much interest in mathematical and physical understanding of the locomotion of living organisms. In a top-down approach, simple time-evolution equations are suitable for qualitatively analyzing the transition between the different types of solutions and the influence of the intrinsic symmetry of systems despite failing to quantitatively reproduce the phenomena. We aim to rigorously show the existence of the rotational, oscillatory, and quasi-periodic solutions and determine their stabilities regarding a canonical equation proposed by Koyano et al. (J Chem Phys 143(1):014117, 2015) for a self-propelled particle confined by a parabolic potential. In the proof, the original equation is reduced to a lower dimensional dynamical system by applying Fenichel’s theorem on the persistence of normally hyperbolic invariant manifolds and the averaging method. Furthermore, the averaged system is identified with essentially a one-dimensional equation because the original equation is <i>O</i>(2)-symmetric.</p>","PeriodicalId":50264,"journal":{"name":"Japan Journal of Industrial and Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and stability of a quasi-periodic two-dimensional motion of a self-propelled particle\",\"authors\":\"Kota Ikeda, Hiroyuki Kitahata, Yuki Koyano\",\"doi\":\"10.1007/s13160-024-00661-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The mechanism of self-propelled particle motion has attracted much interest in mathematical and physical understanding of the locomotion of living organisms. In a top-down approach, simple time-evolution equations are suitable for qualitatively analyzing the transition between the different types of solutions and the influence of the intrinsic symmetry of systems despite failing to quantitatively reproduce the phenomena. We aim to rigorously show the existence of the rotational, oscillatory, and quasi-periodic solutions and determine their stabilities regarding a canonical equation proposed by Koyano et al. (J Chem Phys 143(1):014117, 2015) for a self-propelled particle confined by a parabolic potential. In the proof, the original equation is reduced to a lower dimensional dynamical system by applying Fenichel’s theorem on the persistence of normally hyperbolic invariant manifolds and the averaging method. Furthermore, the averaged system is identified with essentially a one-dimensional equation because the original equation is <i>O</i>(2)-symmetric.</p>\",\"PeriodicalId\":50264,\"journal\":{\"name\":\"Japan Journal of Industrial and Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Japan Journal of Industrial and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13160-024-00661-7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japan Journal of Industrial and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13160-024-00661-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

自走质点运动的机理引起了人们对生物运动的数学和物理理解的极大兴趣。在自上而下的方法中,简单的时间演化方程适用于定性分析不同类型解之间的转换以及系统内在对称性的影响,尽管不能定量地再现现象。我们旨在严格证明旋转解、振荡解和准周期解的存在,并根据小矢野等人(J Chem Phys 143(1):014117, 2015)提出的抛物线势约束自走粒子的典型方程确定它们的稳定性。在证明过程中,通过应用 Fenichel 关于常双曲不变流形的持久性定理和平均法,原始方程被还原为一个低维动力系统。此外,由于原始方程是 O(2)- 对称的,因此平均化后的系统本质上与一维方程相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Existence and stability of a quasi-periodic two-dimensional motion of a self-propelled particle

The mechanism of self-propelled particle motion has attracted much interest in mathematical and physical understanding of the locomotion of living organisms. In a top-down approach, simple time-evolution equations are suitable for qualitatively analyzing the transition between the different types of solutions and the influence of the intrinsic symmetry of systems despite failing to quantitatively reproduce the phenomena. We aim to rigorously show the existence of the rotational, oscillatory, and quasi-periodic solutions and determine their stabilities regarding a canonical equation proposed by Koyano et al. (J Chem Phys 143(1):014117, 2015) for a self-propelled particle confined by a parabolic potential. In the proof, the original equation is reduced to a lower dimensional dynamical system by applying Fenichel’s theorem on the persistence of normally hyperbolic invariant manifolds and the averaging method. Furthermore, the averaged system is identified with essentially a one-dimensional equation because the original equation is O(2)-symmetric.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
56
审稿时长
>12 weeks
期刊介绍: Japan Journal of Industrial and Applied Mathematics (JJIAM) is intended to provide an international forum for the expression of new ideas, as well as a site for the presentation of original research in various fields of the mathematical sciences. Consequently the most welcome types of articles are those which provide new insights into and methods for mathematical structures of various phenomena in the natural, social and industrial sciences, those which link real-world phenomena and mathematics through modeling and analysis, and those which impact the development of the mathematical sciences. The scope of the journal covers applied mathematical analysis, computational techniques and industrial mathematics.
期刊最新文献
An instability framework of Hopf–Turing–Turing singularity in 2-component reaction–diffusion systems Comprehensive and practical optimal delivery planning system for replacing liquefied petroleum gas cylinders Mathematical analysis of a norm-conservative numerical scheme for the Ostrovsky equation A new preconditioned Gauss-Seidel method for solving $${\mathcal {M}}$$ -tensor multi-linear system Convergence error analysis of reflected gradient Langevin dynamics for non-convex constrained optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1