利用微小权重探索高度简洁准确的文本匹配模型

Yangchun Li, Danfeng Yan, Wei Jiang, Yuanqiang Cai, Zhihong Tian
{"title":"利用微小权重探索高度简洁准确的文本匹配模型","authors":"Yangchun Li, Danfeng Yan, Wei Jiang, Yuanqiang Cai, Zhihong Tian","doi":"10.1007/s11280-024-01262-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a simple and general lightweight approach named AL-RE2 for text matching models, and conduct experiments on three well-studied benchmark datasets across tasks of natural language inference and paraphrase identification. Firstly, we explore the feasibility of dimensional compression of word embedding vectors using principal component analysis, and then analyze the impact of the information retained in different dimensions on model accuracy. Considering the balance between compression efficiency and information loss, we choose 128 dimensions to represent each word and make the model params 1.6M. Finally, the feasibility of applying depthwise separable convolution instead of standard convolution in the field of text matching is analyzed in detail. The experimental results show that our model’s inference speed is at least 1.5 times faster and it has 42.76% fewer parameters compared to similarly performing models, while its accuracy on the SciTail dataset of is state-of-the-art among all lightweight models.</p>","PeriodicalId":501180,"journal":{"name":"World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring highly concise and accurate text matching model with tiny weights\",\"authors\":\"Yangchun Li, Danfeng Yan, Wei Jiang, Yuanqiang Cai, Zhihong Tian\",\"doi\":\"10.1007/s11280-024-01262-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose a simple and general lightweight approach named AL-RE2 for text matching models, and conduct experiments on three well-studied benchmark datasets across tasks of natural language inference and paraphrase identification. Firstly, we explore the feasibility of dimensional compression of word embedding vectors using principal component analysis, and then analyze the impact of the information retained in different dimensions on model accuracy. Considering the balance between compression efficiency and information loss, we choose 128 dimensions to represent each word and make the model params 1.6M. Finally, the feasibility of applying depthwise separable convolution instead of standard convolution in the field of text matching is analyzed in detail. The experimental results show that our model’s inference speed is at least 1.5 times faster and it has 42.76% fewer parameters compared to similarly performing models, while its accuracy on the SciTail dataset of is state-of-the-art among all lightweight models.</p>\",\"PeriodicalId\":501180,\"journal\":{\"name\":\"World Wide Web\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Wide Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11280-024-01262-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11280-024-01262-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们为文本匹配模型提出了一种名为 AL-RE2 的简单而通用的轻量级方法,并在三个经过充分研究的基准数据集上进行了实验,这些数据集横跨自然语言推理和转述识别任务。首先,我们探索了利用主成分分析法对词嵌入向量进行维度压缩的可行性,然后分析了不同维度所保留的信息对模型准确性的影响。考虑到压缩效率和信息损失之间的平衡,我们选择 128 维来表示每个词,并将模型参数设置为 1.6M。最后,我们详细分析了在文本匹配领域应用深度可分离卷积代替标准卷积的可行性。实验结果表明,与性能类似的模型相比,我们的模型推理速度至少快了 1.5 倍,参数数量减少了 42.76%,而它在 SciTail 数据集上的准确率在所有轻量级模型中也是最先进的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring highly concise and accurate text matching model with tiny weights

In this paper, we propose a simple and general lightweight approach named AL-RE2 for text matching models, and conduct experiments on three well-studied benchmark datasets across tasks of natural language inference and paraphrase identification. Firstly, we explore the feasibility of dimensional compression of word embedding vectors using principal component analysis, and then analyze the impact of the information retained in different dimensions on model accuracy. Considering the balance between compression efficiency and information loss, we choose 128 dimensions to represent each word and make the model params 1.6M. Finally, the feasibility of applying depthwise separable convolution instead of standard convolution in the field of text matching is analyzed in detail. The experimental results show that our model’s inference speed is at least 1.5 times faster and it has 42.76% fewer parameters compared to similarly performing models, while its accuracy on the SciTail dataset of is state-of-the-art among all lightweight models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HetFS: a method for fast similarity search with ad-hoc meta-paths on heterogeneous information networks A SHAP-based controversy analysis through communities on Twitter pFind: Privacy-preserving lost object finding in vehicular crowdsensing Use of prompt-based learning for code-mixed and code-switched text classification Drug traceability system based on semantic blockchain and on a reputation method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1