基于自愈合离子凝胶复合材料的仿生人造皮肤,具有量身定制的力学和稳健的界面。

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-07-05 DOI:10.1002/adma.202405776
Manwen Zhang, Lingyu Zhao, Feng Tian, Xiaojuan Zhao, Ying Zhang, Xin Yang, Wei Huang, Ran Yu
{"title":"基于自愈合离子凝胶复合材料的仿生人造皮肤,具有量身定制的力学和稳健的界面。","authors":"Manwen Zhang,&nbsp;Lingyu Zhao,&nbsp;Feng Tian,&nbsp;Xiaojuan Zhao,&nbsp;Ying Zhang,&nbsp;Xin Yang,&nbsp;Wei Huang,&nbsp;Ran Yu","doi":"10.1002/adma.202405776","DOIUrl":null,"url":null,"abstract":"<p>Bionic artificial skin which imitates the features and functions of human skin, has broad applications in wearable human-machine interfaces. However, equipping artificial materials with skin-like mechanical properties, self-healing ability, and high sensitivity remains challenging. Here, inspired by the structure of human skin, an artificial skin based on ionogel composites with tailored mechanical properties and robust interface is prepared. Combining finite element analysis and direct ink writing (DIW) 3D printing technology, an ionogel composite with a rigid skeleton and an ionogel matrix is precisely designed and fabricated, realizing the mechanical anisotropy and nonlinear mechanical response that accurately mimic human skin. Robust interface is created through co-curing of the skeleton and matrix resins, significantly enhancing the stability of the composite. The realization of self-healing ability and resistance to crack growth further ensure the remarkable durability of the artificial skin for sensing application. In summary, the bionic artificial skin mimics the characteristics of human skin, including mechanical anisotropy, nonlinear mechanical response, self-healing capability, durability and high sensitivity when applied as flexible sensors. These strategies provide strong support for the fabrication of tissue-like materials with adaptive mechanical behaviors.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bionic Artificial Skin Based on Self-Healable Ionogel Composites with Tailored Mechanics and Robust Interfaces\",\"authors\":\"Manwen Zhang,&nbsp;Lingyu Zhao,&nbsp;Feng Tian,&nbsp;Xiaojuan Zhao,&nbsp;Ying Zhang,&nbsp;Xin Yang,&nbsp;Wei Huang,&nbsp;Ran Yu\",\"doi\":\"10.1002/adma.202405776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bionic artificial skin which imitates the features and functions of human skin, has broad applications in wearable human-machine interfaces. However, equipping artificial materials with skin-like mechanical properties, self-healing ability, and high sensitivity remains challenging. Here, inspired by the structure of human skin, an artificial skin based on ionogel composites with tailored mechanical properties and robust interface is prepared. Combining finite element analysis and direct ink writing (DIW) 3D printing technology, an ionogel composite with a rigid skeleton and an ionogel matrix is precisely designed and fabricated, realizing the mechanical anisotropy and nonlinear mechanical response that accurately mimic human skin. Robust interface is created through co-curing of the skeleton and matrix resins, significantly enhancing the stability of the composite. The realization of self-healing ability and resistance to crack growth further ensure the remarkable durability of the artificial skin for sensing application. In summary, the bionic artificial skin mimics the characteristics of human skin, including mechanical anisotropy, nonlinear mechanical response, self-healing capability, durability and high sensitivity when applied as flexible sensors. These strategies provide strong support for the fabrication of tissue-like materials with adaptive mechanical behaviors.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202405776\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202405776","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

仿生人造皮肤能够模仿人类皮肤的特征和功能,在可穿戴人机界面中有着广泛的应用。然而,使人造材料具有类似皮肤的机械特性、自愈能力和高灵敏度仍是一项挑战。本文受人体皮肤结构的启发,制备了一种基于离子凝胶复合材料的人造皮肤,它具有量身定制的机械性能和坚固的界面。结合有限元分析和直接墨水写入(DIW)三维打印技术,精确设计并制造了具有刚性骨架和离子凝胶基质的离子凝胶复合材料,实现了机械各向异性和非线性机械响应,精确模拟了人体皮肤。通过骨架和基质树脂的共固化,形成了坚固的界面,大大提高了复合材料的稳定性。自愈合能力和抗裂纹生长能力的实现进一步确保了人工皮肤在传感应用中的卓越耐用性。总之,仿生人工皮肤模拟了人类皮肤的特性,包括机械各向异性、非线性机械响应、自愈能力、耐用性和作为柔性传感器应用时的高灵敏度。这些策略为制造具有自适应机械行为的类组织材料提供了强有力的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bionic Artificial Skin Based on Self-Healable Ionogel Composites with Tailored Mechanics and Robust Interfaces

Bionic artificial skin which imitates the features and functions of human skin, has broad applications in wearable human-machine interfaces. However, equipping artificial materials with skin-like mechanical properties, self-healing ability, and high sensitivity remains challenging. Here, inspired by the structure of human skin, an artificial skin based on ionogel composites with tailored mechanical properties and robust interface is prepared. Combining finite element analysis and direct ink writing (DIW) 3D printing technology, an ionogel composite with a rigid skeleton and an ionogel matrix is precisely designed and fabricated, realizing the mechanical anisotropy and nonlinear mechanical response that accurately mimic human skin. Robust interface is created through co-curing of the skeleton and matrix resins, significantly enhancing the stability of the composite. The realization of self-healing ability and resistance to crack growth further ensure the remarkable durability of the artificial skin for sensing application. In summary, the bionic artificial skin mimics the characteristics of human skin, including mechanical anisotropy, nonlinear mechanical response, self-healing capability, durability and high sensitivity when applied as flexible sensors. These strategies provide strong support for the fabrication of tissue-like materials with adaptive mechanical behaviors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Cu-Atom Locations in Rocksalt SnTe Thermoelectric Alloy. Oriented Crystal Polarization Tuning Bulk Charge and Single-Site Chemical State for Exceptional Hydrogen Photo-Production. A Mg Battery-Integrated Bioelectronic Patch Provides Efficient Electrochemical Stimulations for Wound Healing. Concentration-Switchable Assembly of Carbon Dots for Circularly Polarized Luminescent Amplification in Chiral Logic Gates and Deep-Red Light-Emitting Diodes. Hierarchically Ordered Pore Engineering of Carbon Supports with High-Density Edge-Type Single-Atom Sites to Boost Electrochemical CO2 Reduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1