Alexander Brückner, Adrian Brandtner, Sarah Rieck, Michaela Matthey, Caroline Geisen, Benedikt Fels, Marta Stei, Kristina Kusche-Vihrog, Bernd K. Fleischmann, Daniela Wenzel
{"title":"健康小鼠和 AngII ApoE-/- 小鼠动脉瘤预选部位主动脉内皮细胞的特异性基因和功能特征。","authors":"Alexander Brückner, Adrian Brandtner, Sarah Rieck, Michaela Matthey, Caroline Geisen, Benedikt Fels, Marta Stei, Kristina Kusche-Vihrog, Bernd K. Fleischmann, Daniela Wenzel","doi":"10.1007/s10456-024-09933-9","DOIUrl":null,"url":null,"abstract":"<div><p>Aortic aneurysm is characterized by a pathological dilation at specific predilection sites of the vessel and potentially results in life-threatening vascular rupture. Herein, we established a modified “Häutchen method” for the local isolation of endothelial cells (ECs) from mouse aorta to analyze their spatial heterogeneity and potential role in site-specific disease development. When we compared ECs from aneurysm predilection sites of healthy mice with adjacent control segments we found regulation of genes related to extracellular matrix remodeling, angiogenesis and inflammation, all pathways playing a critical role in aneurysm development. We also detected enhanced cortical stiffness of the endothelium at these sites. Gene expression of ECs from aneurysms of the AngII ApoE<sup>−/−</sup> model when compared to sham animals mimicked expression patterns from predilection sites of healthy animals. Thus, this work highlights a striking genetic and functional regional heterogeneity in aortic ECs of healthy mice, which defines the location of aortic aneurysm formation in disease.</p></div>","PeriodicalId":7886,"journal":{"name":"Angiogenesis","volume":"27 4","pages":"719 - 738"},"PeriodicalIF":9.2000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10456-024-09933-9.pdf","citationCount":"0","resultStr":"{\"title\":\"Site-specific genetic and functional signatures of aortic endothelial cells at aneurysm predilection sites in healthy and AngII ApoE−/− mice\",\"authors\":\"Alexander Brückner, Adrian Brandtner, Sarah Rieck, Michaela Matthey, Caroline Geisen, Benedikt Fels, Marta Stei, Kristina Kusche-Vihrog, Bernd K. Fleischmann, Daniela Wenzel\",\"doi\":\"10.1007/s10456-024-09933-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aortic aneurysm is characterized by a pathological dilation at specific predilection sites of the vessel and potentially results in life-threatening vascular rupture. Herein, we established a modified “Häutchen method” for the local isolation of endothelial cells (ECs) from mouse aorta to analyze their spatial heterogeneity and potential role in site-specific disease development. When we compared ECs from aneurysm predilection sites of healthy mice with adjacent control segments we found regulation of genes related to extracellular matrix remodeling, angiogenesis and inflammation, all pathways playing a critical role in aneurysm development. We also detected enhanced cortical stiffness of the endothelium at these sites. Gene expression of ECs from aneurysms of the AngII ApoE<sup>−/−</sup> model when compared to sham animals mimicked expression patterns from predilection sites of healthy animals. Thus, this work highlights a striking genetic and functional regional heterogeneity in aortic ECs of healthy mice, which defines the location of aortic aneurysm formation in disease.</p></div>\",\"PeriodicalId\":7886,\"journal\":{\"name\":\"Angiogenesis\",\"volume\":\"27 4\",\"pages\":\"719 - 738\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10456-024-09933-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angiogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10456-024-09933-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angiogenesis","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s10456-024-09933-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
Site-specific genetic and functional signatures of aortic endothelial cells at aneurysm predilection sites in healthy and AngII ApoE−/− mice
Aortic aneurysm is characterized by a pathological dilation at specific predilection sites of the vessel and potentially results in life-threatening vascular rupture. Herein, we established a modified “Häutchen method” for the local isolation of endothelial cells (ECs) from mouse aorta to analyze their spatial heterogeneity and potential role in site-specific disease development. When we compared ECs from aneurysm predilection sites of healthy mice with adjacent control segments we found regulation of genes related to extracellular matrix remodeling, angiogenesis and inflammation, all pathways playing a critical role in aneurysm development. We also detected enhanced cortical stiffness of the endothelium at these sites. Gene expression of ECs from aneurysms of the AngII ApoE−/− model when compared to sham animals mimicked expression patterns from predilection sites of healthy animals. Thus, this work highlights a striking genetic and functional regional heterogeneity in aortic ECs of healthy mice, which defines the location of aortic aneurysm formation in disease.
期刊介绍:
Angiogenesis, a renowned international journal, seeks to publish high-quality original articles and reviews on the cellular and molecular mechanisms governing angiogenesis in both normal and pathological conditions. By serving as a primary platform for swift communication within the field of angiogenesis research, this multidisciplinary journal showcases pioneering experimental studies utilizing molecular techniques, in vitro methods, animal models, and clinical investigations into angiogenic diseases. Furthermore, Angiogenesis sheds light on cutting-edge therapeutic strategies for promoting or inhibiting angiogenesis, while also highlighting fresh markers and techniques for disease diagnosis and prognosis.