{"title":"纤维蛋白原样 1:连接肝脏生理和血液学的肝脏因子。","authors":"Jean Personnaz, Hervé Guillou, Léon Kautz","doi":"10.1002/hem3.115","DOIUrl":null,"url":null,"abstract":"<p>A recent study identified the critical contribution of the hepatokine FGL1 to the regulation of iron metabolism during the recovery from anemia. FGL1 is secreted by hepatocytes in response to hypoxia to sequester BMP ligands and repress the transcription of the iron-regulatory hormone hepcidin. This process ensures the proper supply of iron to the bone marrow for new red blood cell synthesis and the restoration of physiological oxygen levels. FGL1 may therefore contribute to the recovery from common anemias and cause iron overload in chronic anemias with ineffective erythropoiesis, such as ß-thalassemia, dyserythropoietic anemia, and myelodysplastic syndromes. However, FGL1 has also been described as a regulator of hepatocyte proliferation, glucose homeostasis, and insulin signaling, as well as a mediator of liver steatosis and immune evasion. Chronic exposure to elevated levels of FGL1 during anemia may therefore have systemic metabolic effects besides iron regulation and erythropoiesis. Here, we are providing an overview of the proposed functions of FGL1 in physiology and pathophysiology.</p>","PeriodicalId":12982,"journal":{"name":"HemaSphere","volume":"8 7","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223652/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fibrinogen-like 1: A hepatokine linking liver physiology to hematology\",\"authors\":\"Jean Personnaz, Hervé Guillou, Léon Kautz\",\"doi\":\"10.1002/hem3.115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A recent study identified the critical contribution of the hepatokine FGL1 to the regulation of iron metabolism during the recovery from anemia. FGL1 is secreted by hepatocytes in response to hypoxia to sequester BMP ligands and repress the transcription of the iron-regulatory hormone hepcidin. This process ensures the proper supply of iron to the bone marrow for new red blood cell synthesis and the restoration of physiological oxygen levels. FGL1 may therefore contribute to the recovery from common anemias and cause iron overload in chronic anemias with ineffective erythropoiesis, such as ß-thalassemia, dyserythropoietic anemia, and myelodysplastic syndromes. However, FGL1 has also been described as a regulator of hepatocyte proliferation, glucose homeostasis, and insulin signaling, as well as a mediator of liver steatosis and immune evasion. Chronic exposure to elevated levels of FGL1 during anemia may therefore have systemic metabolic effects besides iron regulation and erythropoiesis. Here, we are providing an overview of the proposed functions of FGL1 in physiology and pathophysiology.</p>\",\"PeriodicalId\":12982,\"journal\":{\"name\":\"HemaSphere\",\"volume\":\"8 7\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223652/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HemaSphere\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hem3.115\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HemaSphere","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hem3.115","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Fibrinogen-like 1: A hepatokine linking liver physiology to hematology
A recent study identified the critical contribution of the hepatokine FGL1 to the regulation of iron metabolism during the recovery from anemia. FGL1 is secreted by hepatocytes in response to hypoxia to sequester BMP ligands and repress the transcription of the iron-regulatory hormone hepcidin. This process ensures the proper supply of iron to the bone marrow for new red blood cell synthesis and the restoration of physiological oxygen levels. FGL1 may therefore contribute to the recovery from common anemias and cause iron overload in chronic anemias with ineffective erythropoiesis, such as ß-thalassemia, dyserythropoietic anemia, and myelodysplastic syndromes. However, FGL1 has also been described as a regulator of hepatocyte proliferation, glucose homeostasis, and insulin signaling, as well as a mediator of liver steatosis and immune evasion. Chronic exposure to elevated levels of FGL1 during anemia may therefore have systemic metabolic effects besides iron regulation and erythropoiesis. Here, we are providing an overview of the proposed functions of FGL1 in physiology and pathophysiology.
期刊介绍:
HemaSphere, as a publication, is dedicated to disseminating the outcomes of profoundly pertinent basic, translational, and clinical research endeavors within the field of hematology. The journal actively seeks robust studies that unveil novel discoveries with significant ramifications for hematology.
In addition to original research, HemaSphere features review articles and guideline articles that furnish lucid synopses and discussions of emerging developments, along with recommendations for patient care.
Positioned as the foremost resource in hematology, HemaSphere augments its offerings with specialized sections like HemaTopics and HemaPolicy. These segments engender insightful dialogues covering a spectrum of hematology-related topics, including digestible summaries of pivotal articles, updates on new therapies, deliberations on European policy matters, and other noteworthy news items within the field. Steering the course of HemaSphere are Editor in Chief Jan Cools and Deputy Editor in Chief Claire Harrison, alongside the guidance of an esteemed Editorial Board comprising international luminaries in both research and clinical realms, each representing diverse areas of hematologic expertise.