{"title":"用于核酸递送的脂质纳米颗粒的 60 年发展历程。","authors":"P. R. Cullis, P. L. Felgner","doi":"10.1038/s41573-024-00977-6","DOIUrl":null,"url":null,"abstract":"Delivery of genetic information to the interior of target cells in vivo has been a major challenge facing gene therapies. This barrier is now being overcome, owing in part to dramatic advances made by lipid-based systems that have led to lipid nanoparticles (LNPs) that enable delivery of nucleic acid-based vaccines and therapeutics. Examples include the clinically approved COVID-19 LNP mRNA vaccines and Onpattro (patisiran), an LNP small interfering RNA therapeutic to treat transthyretin-induced amyloidosis (hATTR). In addition, a host of promising LNP-enabled vaccines and gene therapies are in clinical development. Here, we trace this success to two streams of research conducted over the past 60 years: the discovery of the transfection properties of lipoplexes composed of positively charged cationic lipids complexed with nucleic acid cargos and the development of lipid nanoparticles using ionizable cationic lipids. The fundamental insights gained from these two streams of research offer potential delivery solutions for most forms of gene therapies. Lipid nanoparticle-based systems are increasingly being utilized for the delivery of nucleic acid-based vaccines and therapeutics. In this Perspective, Cullis and Felgner trace the evolution of these systems over the past 60 years and discuss future prospects for LNP-enabled gene therapies.","PeriodicalId":19068,"journal":{"name":"Nature Reviews. Drug Discovery","volume":"23 9","pages":"709-722"},"PeriodicalIF":122.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The 60-year evolution of lipid nanoparticles for nucleic acid delivery\",\"authors\":\"P. R. Cullis, P. L. Felgner\",\"doi\":\"10.1038/s41573-024-00977-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Delivery of genetic information to the interior of target cells in vivo has been a major challenge facing gene therapies. This barrier is now being overcome, owing in part to dramatic advances made by lipid-based systems that have led to lipid nanoparticles (LNPs) that enable delivery of nucleic acid-based vaccines and therapeutics. Examples include the clinically approved COVID-19 LNP mRNA vaccines and Onpattro (patisiran), an LNP small interfering RNA therapeutic to treat transthyretin-induced amyloidosis (hATTR). In addition, a host of promising LNP-enabled vaccines and gene therapies are in clinical development. Here, we trace this success to two streams of research conducted over the past 60 years: the discovery of the transfection properties of lipoplexes composed of positively charged cationic lipids complexed with nucleic acid cargos and the development of lipid nanoparticles using ionizable cationic lipids. The fundamental insights gained from these two streams of research offer potential delivery solutions for most forms of gene therapies. Lipid nanoparticle-based systems are increasingly being utilized for the delivery of nucleic acid-based vaccines and therapeutics. In this Perspective, Cullis and Felgner trace the evolution of these systems over the past 60 years and discuss future prospects for LNP-enabled gene therapies.\",\"PeriodicalId\":19068,\"journal\":{\"name\":\"Nature Reviews. Drug Discovery\",\"volume\":\"23 9\",\"pages\":\"709-722\"},\"PeriodicalIF\":122.7000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews. Drug Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41573-024-00977-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews. Drug Discovery","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41573-024-00977-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
The 60-year evolution of lipid nanoparticles for nucleic acid delivery
Delivery of genetic information to the interior of target cells in vivo has been a major challenge facing gene therapies. This barrier is now being overcome, owing in part to dramatic advances made by lipid-based systems that have led to lipid nanoparticles (LNPs) that enable delivery of nucleic acid-based vaccines and therapeutics. Examples include the clinically approved COVID-19 LNP mRNA vaccines and Onpattro (patisiran), an LNP small interfering RNA therapeutic to treat transthyretin-induced amyloidosis (hATTR). In addition, a host of promising LNP-enabled vaccines and gene therapies are in clinical development. Here, we trace this success to two streams of research conducted over the past 60 years: the discovery of the transfection properties of lipoplexes composed of positively charged cationic lipids complexed with nucleic acid cargos and the development of lipid nanoparticles using ionizable cationic lipids. The fundamental insights gained from these two streams of research offer potential delivery solutions for most forms of gene therapies. Lipid nanoparticle-based systems are increasingly being utilized for the delivery of nucleic acid-based vaccines and therapeutics. In this Perspective, Cullis and Felgner trace the evolution of these systems over the past 60 years and discuss future prospects for LNP-enabled gene therapies.
期刊介绍:
Nature Reviews Drug Discovery is a monthly journal aimed at everyone working in the drug discovery and development arena.
Each issue includes:
Highest-quality reviews and perspectives covering a broad scope.
News stories investigating the hottest topics in drug discovery.
Timely summaries of key primary research papers.
Concise updates on the latest advances in areas such as new drug approvals, patent law, and emerging industry trends and strategies.