优化海藻酸钠胶囊的封装参数:温度和齿轮泵转速对胶囊产量和质量影响的研究

IF 2.7 3区 农林科学 Q3 ENGINEERING, CHEMICAL Journal of Food Process Engineering Pub Date : 2024-07-04 DOI:10.1111/jfpe.14687
Marzhan Tashybayeva, Aitbek Kakimov, Nadir Ibragimov, Gulmira Zhumadilova, Аlibek Muratbayev, Madina Jumazhanova, Berik Idyryshev, Zarina Kapshakbayeva, Aigerim Bepeyeva
{"title":"优化海藻酸钠胶囊的封装参数:温度和齿轮泵转速对胶囊产量和质量影响的研究","authors":"Marzhan Tashybayeva,&nbsp;Aitbek Kakimov,&nbsp;Nadir Ibragimov,&nbsp;Gulmira Zhumadilova,&nbsp;Аlibek Muratbayev,&nbsp;Madina Jumazhanova,&nbsp;Berik Idyryshev,&nbsp;Zarina Kapshakbayeva,&nbsp;Aigerim Bepeyeva","doi":"10.1111/jfpe.14687","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>This study designed and evaluated an encapsulator unit for producing biocomponent-containing capsules using sodium alginate. The encapsulator's principle of operation involved maintaining the gel-forming mixture at a controlled temperature (20–50°C) and utilizing a gear pump to deliver the mixture to a nozzle for capsule formation. Increasing temperature and gear pump rotation speed reduced viscosity, affecting the capsule number, size, and stability. The optimal capsule size and quality were achieved with a sodium alginate concentration of 1%, yielding capsules with rounded shapes, uniform sizes, and soft yet resistant structures. The encapsulation process yielded varying numbers of capsules depending on the rotational speed of the gear pump and the temperature of the gel-forming mixture. Higher temperatures and rotation speeds generally resulted in increased capsule yields. This research advances encapsulation technology for delivering sensitive biomaterials like probiotics, aiding in process optimization.</p>\n </section>\n \n <section>\n \n <h3> Practical applications</h3>\n \n <p>The encapsulator is designed for the production of capsules using structure-forming compounds and can be used in biotechnology, chemical, food and other industries. The encapsulator allows for the production of capsules with precise size and shell thickness, ensuring high quality.</p>\n </section>\n </div>","PeriodicalId":15932,"journal":{"name":"Journal of Food Process Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of encapsulation parameters for sodium alginate capsules: A study on the effect of temperature and gear pump rotation speed on capsule production and quality\",\"authors\":\"Marzhan Tashybayeva,&nbsp;Aitbek Kakimov,&nbsp;Nadir Ibragimov,&nbsp;Gulmira Zhumadilova,&nbsp;Аlibek Muratbayev,&nbsp;Madina Jumazhanova,&nbsp;Berik Idyryshev,&nbsp;Zarina Kapshakbayeva,&nbsp;Aigerim Bepeyeva\",\"doi\":\"10.1111/jfpe.14687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>This study designed and evaluated an encapsulator unit for producing biocomponent-containing capsules using sodium alginate. The encapsulator's principle of operation involved maintaining the gel-forming mixture at a controlled temperature (20–50°C) and utilizing a gear pump to deliver the mixture to a nozzle for capsule formation. Increasing temperature and gear pump rotation speed reduced viscosity, affecting the capsule number, size, and stability. The optimal capsule size and quality were achieved with a sodium alginate concentration of 1%, yielding capsules with rounded shapes, uniform sizes, and soft yet resistant structures. The encapsulation process yielded varying numbers of capsules depending on the rotational speed of the gear pump and the temperature of the gel-forming mixture. Higher temperatures and rotation speeds generally resulted in increased capsule yields. This research advances encapsulation technology for delivering sensitive biomaterials like probiotics, aiding in process optimization.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Practical applications</h3>\\n \\n <p>The encapsulator is designed for the production of capsules using structure-forming compounds and can be used in biotechnology, chemical, food and other industries. The encapsulator allows for the production of capsules with precise size and shell thickness, ensuring high quality.</p>\\n </section>\\n </div>\",\"PeriodicalId\":15932,\"journal\":{\"name\":\"Journal of Food Process Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Process Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfpe.14687\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Process Engineering","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfpe.14687","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究设计并评估了一种使用海藻酸钠生产含生物成分胶囊的封装装置。封装器的工作原理包括将凝胶形成混合物保持在可控温度(20-50°C)下,并利用齿轮泵将混合物输送到喷嘴以形成胶囊。提高温度和齿轮泵转速会降低粘度,从而影响胶囊的数量、大小和稳定性。海藻酸钠浓度为 1%时,胶囊的大小和质量最佳,胶囊形状圆润,大小均匀,结构柔软而坚固。根据齿轮泵的转速和凝胶形成混合物的温度,封装过程产生的胶囊数量各不相同。温度和转速越高,胶囊产量越大。这项研究推进了用于输送益生菌等敏感生物材料的封装技术,有助于工艺优化。 实际应用 该封装器专为使用结构形成化合物生产胶囊而设计,可用于生物技术、化工、食品和其他行业。封装机可以生产出尺寸和外壳厚度精确的胶囊,确保高质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of encapsulation parameters for sodium alginate capsules: A study on the effect of temperature and gear pump rotation speed on capsule production and quality

This study designed and evaluated an encapsulator unit for producing biocomponent-containing capsules using sodium alginate. The encapsulator's principle of operation involved maintaining the gel-forming mixture at a controlled temperature (20–50°C) and utilizing a gear pump to deliver the mixture to a nozzle for capsule formation. Increasing temperature and gear pump rotation speed reduced viscosity, affecting the capsule number, size, and stability. The optimal capsule size and quality were achieved with a sodium alginate concentration of 1%, yielding capsules with rounded shapes, uniform sizes, and soft yet resistant structures. The encapsulation process yielded varying numbers of capsules depending on the rotational speed of the gear pump and the temperature of the gel-forming mixture. Higher temperatures and rotation speeds generally resulted in increased capsule yields. This research advances encapsulation technology for delivering sensitive biomaterials like probiotics, aiding in process optimization.

Practical applications

The encapsulator is designed for the production of capsules using structure-forming compounds and can be used in biotechnology, chemical, food and other industries. The encapsulator allows for the production of capsules with precise size and shell thickness, ensuring high quality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Food Process Engineering
Journal of Food Process Engineering 工程技术-工程:化工
CiteScore
5.70
自引率
10.00%
发文量
259
审稿时长
2 months
期刊介绍: This international research journal focuses on the engineering aspects of post-production handling, storage, processing, packaging, and distribution of food. Read by researchers, food and chemical engineers, and industry experts, this is the only international journal specifically devoted to the engineering aspects of food processing. Co-Editors M. Elena Castell-Perez and Rosana Moreira, both of Texas A&M University, welcome papers covering the best original research on applications of engineering principles and concepts to food and food processes.
期刊最新文献
Simulation Study on Heat and Moisture Transfer in Cross-Flow Drying Aeration of Bulk Corn in a Cone-Bottom Silo Using Natural and Low-Temperature Air Optimizing the Precipitation of Bioactive Compounds From Extracted Curcuma longa Linn. Using Gas Anti-Solvent Process Issue Information The Impact of Drying Techniques on Stabilizing Microencapsulated Astaxanthin From Shrimp Shells: A Comparative Study of Spray Drying Versus Freeze Drying Improvement in uniformity of co-linear pulsed electric field treatment chamber by sub-electrodes and its optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1