加强家禽加工过程中的微生物控制:屠体清洗系统综合研究

IF 1.9 4区 农林科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Food Safety Pub Date : 2024-07-02 DOI:10.1111/jfs.13151
Débora Zamprogna Flores, Clarice Steffens, Natalia Paroul, Geciane Toniazzo Backes, Juliana Steffens, Eunice Valduga, Rogério Luis Cansian
{"title":"加强家禽加工过程中的微生物控制:屠体清洗系统综合研究","authors":"Débora Zamprogna Flores,&nbsp;Clarice Steffens,&nbsp;Natalia Paroul,&nbsp;Geciane Toniazzo Backes,&nbsp;Juliana Steffens,&nbsp;Eunice Valduga,&nbsp;Rogério Luis Cansian","doi":"10.1111/jfs.13151","DOIUrl":null,"url":null,"abstract":"<p>In the poultry industry, the evisceration stage often sees the highest microbial load on chicken carcasses. While manual trimming has traditionally been employed to remove gastrointestinal contamination, Brazilian legislation allows the use of a carcass washing system as an alternative. This study aimed to establish and validate a protocol for the use of a chicken carcass washing system as a replacement for manual trimming in a major poultry processing facility in southern Brazil. The methodology followed international standards for microbial analysis such as total mesophilic counts and <i>Enterobacteriaceae</i>. Comparing contamination levels before and after treatments, significant reductions are seen. Manual trimming reduced contamination by 39.43% (gastric), 53% (fecal), and 50% (biliary). Washing achieved greater reductions, with a 96.37% drop in gastric contamination and complete elimination (100%) of fecal contamination. These results met statistical significance. Both procedures reduced contamination levels. Manual trimming maintained 50% of samples below the mean value without exceeding upper control limits (UCL). Washing increased the percentage of samples below the mean value from 46% to 54%, demonstrating its superior efficiency. For <i>Enterobacteriaceae</i>, trimming maintained 44% of samples below the mean value, and washing increased it from 46% to 48%. In conclusion, the carcass washing system effectively removes visible gastrointestinal contents, meeting regulatory standards and receiving authorization from the Federal Inspection Service for use in the facility.</p>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing microbial control in poultry processing: A comprehensive study on carcass washing systems\",\"authors\":\"Débora Zamprogna Flores,&nbsp;Clarice Steffens,&nbsp;Natalia Paroul,&nbsp;Geciane Toniazzo Backes,&nbsp;Juliana Steffens,&nbsp;Eunice Valduga,&nbsp;Rogério Luis Cansian\",\"doi\":\"10.1111/jfs.13151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the poultry industry, the evisceration stage often sees the highest microbial load on chicken carcasses. While manual trimming has traditionally been employed to remove gastrointestinal contamination, Brazilian legislation allows the use of a carcass washing system as an alternative. This study aimed to establish and validate a protocol for the use of a chicken carcass washing system as a replacement for manual trimming in a major poultry processing facility in southern Brazil. The methodology followed international standards for microbial analysis such as total mesophilic counts and <i>Enterobacteriaceae</i>. Comparing contamination levels before and after treatments, significant reductions are seen. Manual trimming reduced contamination by 39.43% (gastric), 53% (fecal), and 50% (biliary). Washing achieved greater reductions, with a 96.37% drop in gastric contamination and complete elimination (100%) of fecal contamination. These results met statistical significance. Both procedures reduced contamination levels. Manual trimming maintained 50% of samples below the mean value without exceeding upper control limits (UCL). Washing increased the percentage of samples below the mean value from 46% to 54%, demonstrating its superior efficiency. For <i>Enterobacteriaceae</i>, trimming maintained 44% of samples below the mean value, and washing increased it from 46% to 48%. In conclusion, the carcass washing system effectively removes visible gastrointestinal contents, meeting regulatory standards and receiving authorization from the Federal Inspection Service for use in the facility.</p>\",\"PeriodicalId\":15814,\"journal\":{\"name\":\"Journal of Food Safety\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Safety\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfs.13151\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfs.13151","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在家禽业中,开膛阶段往往是鸡胴体微生物负荷最高的阶段。虽然传统上采用人工修剪来清除肠胃污染,但巴西法律允许使用鸡体清洗系统作为替代。这项研究的目的是在巴西南部的一家大型家禽加工厂建立并验证使用鸡屠体清洗系统替代人工修剪的方案。该方法遵循微生物分析的国际标准,例如嗜中性总计数和肠杆菌科。比较处理前后的污染水平,发现污染水平显著降低。人工修剪使污染水平降低了 39.43%(胃)、53%(粪便)和 50%(胆汁)。清洗的减少幅度更大,胃部污染减少了 96.37%,粪便污染完全消除(100%)。这些结果符合统计学意义。两种程序都降低了污染水平。人工修剪可使 50%的样本保持在平均值以下,且不超过控制上限 (UCL)。水洗将低于平均值的样本比例从 46% 提高到 54%,显示了其卓越的效率。对于肠杆菌科细菌,修剪可将 44% 的样本保持在平均值以下,而清洗则可将其从 46% 提高到 48%。总之,屠体清洗系统能有效去除可见的胃肠道内容物,符合监管标准,并获得了联邦检验局的授权,可在屠宰场使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing microbial control in poultry processing: A comprehensive study on carcass washing systems

In the poultry industry, the evisceration stage often sees the highest microbial load on chicken carcasses. While manual trimming has traditionally been employed to remove gastrointestinal contamination, Brazilian legislation allows the use of a carcass washing system as an alternative. This study aimed to establish and validate a protocol for the use of a chicken carcass washing system as a replacement for manual trimming in a major poultry processing facility in southern Brazil. The methodology followed international standards for microbial analysis such as total mesophilic counts and Enterobacteriaceae. Comparing contamination levels before and after treatments, significant reductions are seen. Manual trimming reduced contamination by 39.43% (gastric), 53% (fecal), and 50% (biliary). Washing achieved greater reductions, with a 96.37% drop in gastric contamination and complete elimination (100%) of fecal contamination. These results met statistical significance. Both procedures reduced contamination levels. Manual trimming maintained 50% of samples below the mean value without exceeding upper control limits (UCL). Washing increased the percentage of samples below the mean value from 46% to 54%, demonstrating its superior efficiency. For Enterobacteriaceae, trimming maintained 44% of samples below the mean value, and washing increased it from 46% to 48%. In conclusion, the carcass washing system effectively removes visible gastrointestinal contents, meeting regulatory standards and receiving authorization from the Federal Inspection Service for use in the facility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Food Safety
Journal of Food Safety 工程技术-生物工程与应用微生物
CiteScore
5.30
自引率
0.00%
发文量
69
审稿时长
1 months
期刊介绍: The Journal of Food Safety emphasizes mechanistic studies involving inhibition, injury, and metabolism of food poisoning microorganisms, as well as the regulation of growth and toxin production in both model systems and complex food substrates. It also focuses on pathogens which cause food-borne illness, helping readers understand the factors affecting the initial detection of parasites, their development, transmission, and methods of control and destruction.
期刊最新文献
Pulsed Light Decontamination of Red Chilies (Capsicum annuum var. longum) Enhanced Antibacterial and Anti-Biofilm Functions of Black Bean Skin Anthocyanins Against V. parahaemolyticus Low-Temperature Domestic Deep-Frying of Soybean-Cake Tempe in Vegetable Cooking Oils: How Many Times Are Stable to Use? Assessment and Validation of Predictive Growth Models for Locally Isolated Salmonella enterica and Listeria monocytogenes in Alfalfa Sprouts at Various Temperatures Application of Antioxidant- and Antimicrobial-Rich Extracts From Hass Avocado Pulp in the Development of Chitosan/Gelatin-Based Active Packaging Films for Raw Meat Preservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1