Leanda C. Garvie, Mark Brown, David J. Lee, Biljana Kulišić
{"title":"预测新兴森林生物经济市场的投资潜力:欧盟-澳大利亚基准研究","authors":"Leanda C. Garvie, Mark Brown, David J. Lee, Biljana Kulišić","doi":"10.1111/gcbb.13176","DOIUrl":null,"url":null,"abstract":"<p>In emerging markets, investment costs tend to be associated with uncertainty, especially if the investment is policy driven. Globally, nations have agreed to reduce greenhouse gas emissions to keep the temperature increase below 1.5°C by 2100. Australia faces challenges in achieving its Paris Agreement Nationally Determined Contributions and Agenda 2030 commitments, mostly given the extraction profile of its economy. Introducing renewable carbon from forest residues in the niche markets could increase the competitiveness of the forest industry not only in terms of reduced energy costs but also in terms of ‘greening’ the primary product. Growing interest in the bioenergy market, linked with large volumes of available biomass feedstocks including forest residues, presents opportunities in Australia. Yet, ambiguity about costs and concerns about biomass supply throttle the investment potential. This paper aims to estimate a range of forest residue costs along the supply chain for the Australian market by projecting the biomass supply costs from a mature bioenergy market onto it using a benchmarking process reinforced by expert opinion. A three-round Delphi method in which experts indicated direction and range of costs along the forest biomass supply chain revealed that roadside costs of forest residues (other than stumps), and biomass transportation costs, are lower than or equal to and equal to or higher than, the EU costs respectively. Experts ranked investment and supply-side support as priority areas for the development of forest bioenergy in Australia. The expert estimations of forest residue cost ranges along the supply chain offer the first layer for framing a national policy for forest bioenergy within the broader bioeconomy.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"16 8","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13176","citationCount":"0","resultStr":"{\"title\":\"Projecting investment potential of an emerging forest bioeconomy market: An EU—Australian benchmarking study\",\"authors\":\"Leanda C. Garvie, Mark Brown, David J. Lee, Biljana Kulišić\",\"doi\":\"10.1111/gcbb.13176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In emerging markets, investment costs tend to be associated with uncertainty, especially if the investment is policy driven. Globally, nations have agreed to reduce greenhouse gas emissions to keep the temperature increase below 1.5°C by 2100. Australia faces challenges in achieving its Paris Agreement Nationally Determined Contributions and Agenda 2030 commitments, mostly given the extraction profile of its economy. Introducing renewable carbon from forest residues in the niche markets could increase the competitiveness of the forest industry not only in terms of reduced energy costs but also in terms of ‘greening’ the primary product. Growing interest in the bioenergy market, linked with large volumes of available biomass feedstocks including forest residues, presents opportunities in Australia. Yet, ambiguity about costs and concerns about biomass supply throttle the investment potential. This paper aims to estimate a range of forest residue costs along the supply chain for the Australian market by projecting the biomass supply costs from a mature bioenergy market onto it using a benchmarking process reinforced by expert opinion. A three-round Delphi method in which experts indicated direction and range of costs along the forest biomass supply chain revealed that roadside costs of forest residues (other than stumps), and biomass transportation costs, are lower than or equal to and equal to or higher than, the EU costs respectively. Experts ranked investment and supply-side support as priority areas for the development of forest bioenergy in Australia. The expert estimations of forest residue cost ranges along the supply chain offer the first layer for framing a national policy for forest bioenergy within the broader bioeconomy.</p>\",\"PeriodicalId\":55126,\"journal\":{\"name\":\"Global Change Biology Bioenergy\",\"volume\":\"16 8\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.13176\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13176\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.13176","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Projecting investment potential of an emerging forest bioeconomy market: An EU—Australian benchmarking study
In emerging markets, investment costs tend to be associated with uncertainty, especially if the investment is policy driven. Globally, nations have agreed to reduce greenhouse gas emissions to keep the temperature increase below 1.5°C by 2100. Australia faces challenges in achieving its Paris Agreement Nationally Determined Contributions and Agenda 2030 commitments, mostly given the extraction profile of its economy. Introducing renewable carbon from forest residues in the niche markets could increase the competitiveness of the forest industry not only in terms of reduced energy costs but also in terms of ‘greening’ the primary product. Growing interest in the bioenergy market, linked with large volumes of available biomass feedstocks including forest residues, presents opportunities in Australia. Yet, ambiguity about costs and concerns about biomass supply throttle the investment potential. This paper aims to estimate a range of forest residue costs along the supply chain for the Australian market by projecting the biomass supply costs from a mature bioenergy market onto it using a benchmarking process reinforced by expert opinion. A three-round Delphi method in which experts indicated direction and range of costs along the forest biomass supply chain revealed that roadside costs of forest residues (other than stumps), and biomass transportation costs, are lower than or equal to and equal to or higher than, the EU costs respectively. Experts ranked investment and supply-side support as priority areas for the development of forest bioenergy in Australia. The expert estimations of forest residue cost ranges along the supply chain offer the first layer for framing a national policy for forest bioenergy within the broader bioeconomy.
期刊介绍:
GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used.
Key areas covered by the journal:
Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis).
Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW).
Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues.
Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems.
Bioenergy Policy: legislative developments affecting biofuels and bioenergy.
Bioenergy Systems Analysis: examining biological developments in a whole systems context.