传播自旋波中手性的形成

Cody Trevillian, Vasyl Tyberkevych
{"title":"传播自旋波中手性的形成","authors":"Cody Trevillian, Vasyl Tyberkevych","doi":"10.1038/s44306-024-00026-3","DOIUrl":null,"url":null,"abstract":"A general approach to quantify chirality, or absence of parity symmetry, of spin waves has been developed and applied to spin waves propagating in obliquely magnetized ferromagnetic films. Using theoretical arguments and numerical calculations, it is shown that, upon increasing spin wave wavevector, initially achiral spin waves develop chiral properties through the “parity exchange” mechanism, which implies, in particular, that chiral spin waves appear in pairs. The most striking example of the parity exchange mechanism is the simultaneous formation of two chiral waves: the magnetostatic surface wave and the recently discovered heterosymmetric spin wave, which were previously considered independent of each other. Another manifestation of the parity exchange is the formation of strongly chiral waves near the anti-crossings of spin wave branches of unequal symmetry. These findings illustrate viable paths to engineering spin wave systems with prescribed chiral spectra that had not previously been considered.","PeriodicalId":501713,"journal":{"name":"npj Spintronics","volume":" ","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44306-024-00026-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Formation of chirality in propagating spin waves\",\"authors\":\"Cody Trevillian, Vasyl Tyberkevych\",\"doi\":\"10.1038/s44306-024-00026-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A general approach to quantify chirality, or absence of parity symmetry, of spin waves has been developed and applied to spin waves propagating in obliquely magnetized ferromagnetic films. Using theoretical arguments and numerical calculations, it is shown that, upon increasing spin wave wavevector, initially achiral spin waves develop chiral properties through the “parity exchange” mechanism, which implies, in particular, that chiral spin waves appear in pairs. The most striking example of the parity exchange mechanism is the simultaneous formation of two chiral waves: the magnetostatic surface wave and the recently discovered heterosymmetric spin wave, which were previously considered independent of each other. Another manifestation of the parity exchange is the formation of strongly chiral waves near the anti-crossings of spin wave branches of unequal symmetry. These findings illustrate viable paths to engineering spin wave systems with prescribed chiral spectra that had not previously been considered.\",\"PeriodicalId\":501713,\"journal\":{\"name\":\"npj Spintronics\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s44306-024-00026-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Spintronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44306-024-00026-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Spintronics","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44306-024-00026-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种量化自旋波手性或缺乏奇偶对称性的通用方法,并将其应用于在斜磁化铁磁薄膜中传播的自旋波。理论论证和数值计算表明,随着自旋波波矢量的增加,最初的非手性自旋波通过 "奇偶性交换 "机制发展出手性特性,这尤其意味着手性自旋波成对出现。奇偶性交换机制最显著的例子是同时形成两种手性波:磁静表面波和最近发现的异对称自旋波,而这两种波之前被认为是相互独立的。奇偶性交换的另一种表现形式是在不对称自旋波分支的反交叉点附近形成强手性波。这些发现说明了设计具有规定手性谱的自旋波系统的可行途径,而这是以前从未考虑过的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formation of chirality in propagating spin waves
A general approach to quantify chirality, or absence of parity symmetry, of spin waves has been developed and applied to spin waves propagating in obliquely magnetized ferromagnetic films. Using theoretical arguments and numerical calculations, it is shown that, upon increasing spin wave wavevector, initially achiral spin waves develop chiral properties through the “parity exchange” mechanism, which implies, in particular, that chiral spin waves appear in pairs. The most striking example of the parity exchange mechanism is the simultaneous formation of two chiral waves: the magnetostatic surface wave and the recently discovered heterosymmetric spin wave, which were previously considered independent of each other. Another manifestation of the parity exchange is the formation of strongly chiral waves near the anti-crossings of spin wave branches of unequal symmetry. These findings illustrate viable paths to engineering spin wave systems with prescribed chiral spectra that had not previously been considered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spin-Hall effect in topological materials: evaluating the proper spin current in systems with arbitrary degeneracies Recent progress on controlling spin-orbit torques by materials design Enhanced performance and functionality in spintronic sensors Connecting physics to systems with modular spin-circuits The mysterious magnetic ground state of Ba14MnBi11 is likely self-doped and altermagnetic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1