卫星观测结果表明,人为压力对海南岛近岸海域的悬浮颗粒物浓度有很大影响。

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Journal of Environmental Management Pub Date : 2024-08-01 Epub Date: 2024-07-04 DOI:10.1016/j.jenvman.2024.121617
Rong Zhong, Songlin Liu, Shiquan Chen, Linhong Zhao, Dingtian Yang
{"title":"卫星观测结果表明,人为压力对海南岛近岸海域的悬浮颗粒物浓度有很大影响。","authors":"Rong Zhong, Songlin Liu, Shiquan Chen, Linhong Zhao, Dingtian Yang","doi":"10.1016/j.jenvman.2024.121617","DOIUrl":null,"url":null,"abstract":"<p><p>Suspended particulate matter (SPM) plays a crucial role in assessing the health status of coastal ecosystems. Satellite remote sensing offers an effective approach to investigate the variations and distribution patterns of SPM, with the performance of various satellite retrieval models exhibiting significant spatial heterogeneity. However, there is still limited information on precise remote sensing retrieval algorithms specifically designed for estimating SPM in tropical areas, hindering our ability to monitor the health status of valuable tropical ecological resources. A relatively accurate empirical algorithm (root mean square error = 2.241 mg L<sup>-1</sup>, mean absolute percentage error = 42.527%) was first developed for the coastal SPM of Hainan Island based on MODIS images and over a decade of field SPM data, which conducted comprehensive comparisons among empirical models, semi-analytical models, and machine learning models. Long-term monitoring from 2003 to 2022 revealed that the average SPM concentration along the coastal wetlands of Hainan Island was 6.848 mg L<sup>-1</sup>, which displayed a decreasing trend due to government environmental protection regulations (average rate of change of -0.009 mg L<sup>-1</sup>/year). The seasonal variations in coastal SPM were primarily influenced by sea surface temperature (SST). Spatially, the concentrations of SPM along the southwest coast of Hainan Island were higher in comparison to other waters, which was attributable to sediment types and ocean currents. Further, anthropogenic pressure (e.g., agricultural waste input, vegetation cover) was the main influence on the long-term changes of coastal SPM in Hainan Island, particularly evident in typical tropical ecosystems affected by aquaculture, coastal engineering, and changes in coastal green vegetation. Compared to other typical ecosystems around the globe, the overall health status of SPM along the coast wetlands of Hainan is considered satisfactory. These findings not only establish a robust remote sensing model for long-term SPM monitoring along the coast of Hainan Island, but also provide comprehensive insights into SPM dynamics, thereby contributing to the formulation of future coastal zone management policies.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Satellite observations reveal anthropogenic pressure significantly affects the suspended particulate matter concentrations in coastal waters of Hainan Island.\",\"authors\":\"Rong Zhong, Songlin Liu, Shiquan Chen, Linhong Zhao, Dingtian Yang\",\"doi\":\"10.1016/j.jenvman.2024.121617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Suspended particulate matter (SPM) plays a crucial role in assessing the health status of coastal ecosystems. Satellite remote sensing offers an effective approach to investigate the variations and distribution patterns of SPM, with the performance of various satellite retrieval models exhibiting significant spatial heterogeneity. However, there is still limited information on precise remote sensing retrieval algorithms specifically designed for estimating SPM in tropical areas, hindering our ability to monitor the health status of valuable tropical ecological resources. A relatively accurate empirical algorithm (root mean square error = 2.241 mg L<sup>-1</sup>, mean absolute percentage error = 42.527%) was first developed for the coastal SPM of Hainan Island based on MODIS images and over a decade of field SPM data, which conducted comprehensive comparisons among empirical models, semi-analytical models, and machine learning models. Long-term monitoring from 2003 to 2022 revealed that the average SPM concentration along the coastal wetlands of Hainan Island was 6.848 mg L<sup>-1</sup>, which displayed a decreasing trend due to government environmental protection regulations (average rate of change of -0.009 mg L<sup>-1</sup>/year). The seasonal variations in coastal SPM were primarily influenced by sea surface temperature (SST). Spatially, the concentrations of SPM along the southwest coast of Hainan Island were higher in comparison to other waters, which was attributable to sediment types and ocean currents. Further, anthropogenic pressure (e.g., agricultural waste input, vegetation cover) was the main influence on the long-term changes of coastal SPM in Hainan Island, particularly evident in typical tropical ecosystems affected by aquaculture, coastal engineering, and changes in coastal green vegetation. Compared to other typical ecosystems around the globe, the overall health status of SPM along the coast wetlands of Hainan is considered satisfactory. These findings not only establish a robust remote sensing model for long-term SPM monitoring along the coast of Hainan Island, but also provide comprehensive insights into SPM dynamics, thereby contributing to the formulation of future coastal zone management policies.</p>\",\"PeriodicalId\":356,\"journal\":{\"name\":\"Journal of Environmental Management\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jenvman.2024.121617\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2024.121617","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

悬浮颗粒物(SPM)在评估沿海生态系统的健康状况方面起着至关重要的作用。卫星遥感为研究 SPM 的变化和分布模式提供了一种有效的方法,各种卫星检索模型的性能表现出明显的空间异质性。然而,专门用于估算热带地区 SPM 的精确遥感检索算法的信息仍然有限,这阻碍了我们监测宝贵的热带生态资源健康状况的能力。基于 MODIS 图像和十多年的野外 SPM 数据,对经验模型、半分析模型和机器学习模型进行了综合比较,首次针对海南岛沿海 SPM 开发了相对精确的经验算法(均方根误差 = 2.241 mg L-1,平均绝对百分比误差 = 42.527%)。2003-2022年的长期监测表明,海南岛滨海湿地SPM平均浓度为6.848 mg L-1,受政府环保法规的影响,SPM浓度呈下降趋势(平均变化率为-0.009 mg L-1/年)。沿岸 SPM 的季节变化主要受海表温度(SST)的影响。从空间上看,海南岛西南沿海的 SPM 浓度高于其他海域,这与沉积物类型和洋流有关。此外,人为压力(如农业废弃物输入、植被覆盖)是海南岛沿岸 SPM 长期变化的主要影响因素,在受水产养殖、海岸工程和沿岸绿色植被变化影响的典型热带生态系统中尤为明显。与全球其他典型生态系统相比,海南沿海湿地 SPM 的总体健康状况令人满意。这些研究结果不仅为海南岛沿岸 SPM 的长期监测建立了稳健的遥感模型,而且全面揭示了 SPM 的动态变化,有助于未来海岸带管理政策的制定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Satellite observations reveal anthropogenic pressure significantly affects the suspended particulate matter concentrations in coastal waters of Hainan Island.

Suspended particulate matter (SPM) plays a crucial role in assessing the health status of coastal ecosystems. Satellite remote sensing offers an effective approach to investigate the variations and distribution patterns of SPM, with the performance of various satellite retrieval models exhibiting significant spatial heterogeneity. However, there is still limited information on precise remote sensing retrieval algorithms specifically designed for estimating SPM in tropical areas, hindering our ability to monitor the health status of valuable tropical ecological resources. A relatively accurate empirical algorithm (root mean square error = 2.241 mg L-1, mean absolute percentage error = 42.527%) was first developed for the coastal SPM of Hainan Island based on MODIS images and over a decade of field SPM data, which conducted comprehensive comparisons among empirical models, semi-analytical models, and machine learning models. Long-term monitoring from 2003 to 2022 revealed that the average SPM concentration along the coastal wetlands of Hainan Island was 6.848 mg L-1, which displayed a decreasing trend due to government environmental protection regulations (average rate of change of -0.009 mg L-1/year). The seasonal variations in coastal SPM were primarily influenced by sea surface temperature (SST). Spatially, the concentrations of SPM along the southwest coast of Hainan Island were higher in comparison to other waters, which was attributable to sediment types and ocean currents. Further, anthropogenic pressure (e.g., agricultural waste input, vegetation cover) was the main influence on the long-term changes of coastal SPM in Hainan Island, particularly evident in typical tropical ecosystems affected by aquaculture, coastal engineering, and changes in coastal green vegetation. Compared to other typical ecosystems around the globe, the overall health status of SPM along the coast wetlands of Hainan is considered satisfactory. These findings not only establish a robust remote sensing model for long-term SPM monitoring along the coast of Hainan Island, but also provide comprehensive insights into SPM dynamics, thereby contributing to the formulation of future coastal zone management policies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
期刊最新文献
A two-dimensional four-quadrant assessment method to explore the spatiotemporal coupling and coordination relationship of human activities and ecological environment Comprehensive assessment of the climatic and vegetation impacts of wind farms on grasslands: A case study in inner Mongolia, China Co-treatment of agri-food waste streams using black soldier fly larvae (Hermetia illucens L.): A sustainable solution for rural waste management Linking functional habitat and fish population dynamics modeling to improve river rehabilitation planning and assessment New quality productivity and environmental innovation: The hostile moderating roles of managerial empowerment and board centralization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1