细胞外囊泡的细胞内旅程和生物医学应用。

IF 15.2 1区 医学 Q1 PHARMACOLOGY & PHARMACY Advanced drug delivery reviews Pub Date : 2024-07-03 DOI:10.1016/j.addr.2024.115388
{"title":"细胞外囊泡的细胞内旅程和生物医学应用。","authors":"","doi":"10.1016/j.addr.2024.115388","DOIUrl":null,"url":null,"abstract":"<div><p>The intracellular journey of extracellular vesicles (EVs) cannot be ignored in various biological pathological processes. In this review, the biogenesis, biological functions, uptake pathways, intracellular trafficking routes, and biomedical applications of EVs were highlighted. Endosomal escape is a unique mode of EVs release. When vesicles escape from endosomes, they avoid the fate of fusing with lysosomes and being degraded, thus having the opportunity to directly enter the cytoplasm or other organelles. This escape mechanism is crucial for EVs to deliver specific signals or substances. The intracellular trafficking of EVs after endosomal escape is a complex and significant biological process that involves the coordinated work of various cellular structures and molecules. Through the in-depth study of this process, the function and regulatory mechanism of EVs are fully understood, providing new dimensions for future biomedical diagnosis and treatment.</p></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":null,"pages":null},"PeriodicalIF":15.2000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unignored intracellular journey and biomedical applications of extracellular vesicles\",\"authors\":\"\",\"doi\":\"10.1016/j.addr.2024.115388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The intracellular journey of extracellular vesicles (EVs) cannot be ignored in various biological pathological processes. In this review, the biogenesis, biological functions, uptake pathways, intracellular trafficking routes, and biomedical applications of EVs were highlighted. Endosomal escape is a unique mode of EVs release. When vesicles escape from endosomes, they avoid the fate of fusing with lysosomes and being degraded, thus having the opportunity to directly enter the cytoplasm or other organelles. This escape mechanism is crucial for EVs to deliver specific signals or substances. The intracellular trafficking of EVs after endosomal escape is a complex and significant biological process that involves the coordinated work of various cellular structures and molecules. Through the in-depth study of this process, the function and regulatory mechanism of EVs are fully understood, providing new dimensions for future biomedical diagnosis and treatment.</p></div>\",\"PeriodicalId\":7254,\"journal\":{\"name\":\"Advanced drug delivery reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.2000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced drug delivery reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169409X24002102\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced drug delivery reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169409X24002102","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

在各种生物病理过程中,细胞外囊泡(EVs)的胞内之旅不容忽视。在这篇综述中,重点介绍了EVs的生物发生、生物功能、摄取途径、细胞内转运路线和生物医学应用。内泌体逸出是一种独特的EVs释放模式。当囊泡从内体逸出时,它们避免了与溶酶体融合并被降解的命运,从而有机会直接进入细胞质或其他细胞器。这种逃逸机制对 EVs 传递特定信号或物质至关重要。内质体逸出后的胞内运输是一个复杂而重要的生物学过程,涉及各种细胞结构和分子的协调工作。通过对这一过程的深入研究,可以全面了解EVs的功能和调控机制,为未来的生物医学诊断和治疗提供新的维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unignored intracellular journey and biomedical applications of extracellular vesicles

The intracellular journey of extracellular vesicles (EVs) cannot be ignored in various biological pathological processes. In this review, the biogenesis, biological functions, uptake pathways, intracellular trafficking routes, and biomedical applications of EVs were highlighted. Endosomal escape is a unique mode of EVs release. When vesicles escape from endosomes, they avoid the fate of fusing with lysosomes and being degraded, thus having the opportunity to directly enter the cytoplasm or other organelles. This escape mechanism is crucial for EVs to deliver specific signals or substances. The intracellular trafficking of EVs after endosomal escape is a complex and significant biological process that involves the coordinated work of various cellular structures and molecules. Through the in-depth study of this process, the function and regulatory mechanism of EVs are fully understood, providing new dimensions for future biomedical diagnosis and treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
28.10
自引率
5.00%
发文量
294
审稿时长
15.1 weeks
期刊介绍: The aim of the Journal is to provide a forum for the critical analysis of advanced drug and gene delivery systems and their applications in human and veterinary medicine. The Journal has a broad scope, covering the key issues for effective drug and gene delivery, from administration to site-specific delivery. In general, the Journal publishes review articles in a Theme Issue format. Each Theme Issue provides a comprehensive and critical examination of current and emerging research on the design and development of advanced drug and gene delivery systems and their application to experimental and clinical therapeutics. The goal is to illustrate the pivotal role of a multidisciplinary approach to modern drug delivery, encompassing the application of sound biological and physicochemical principles to the engineering of drug delivery systems to meet the therapeutic need at hand. Importantly the Editorial Team of ADDR asks that the authors effectively window the extensive volume of literature, pick the important contributions and explain their importance, produce a forward looking identification of the challenges facing the field and produce a Conclusions section with expert recommendations to address the issues.
期刊最新文献
Editorial Board Application of MIDD to accelerate the development of anti-infectives: Current status and future perspectives Effects of nanoparticle deformability on multiscale biotransport Editorial Board Model-informed precision dosing: State of the art and future perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1