受媒体影响的人类乳头瘤病毒传播模型的建模与分析。

IF 1.9 4区 数学 Q2 BIOLOGY Mathematical Biosciences Pub Date : 2024-07-03 DOI:10.1016/j.mbs.2024.109247
{"title":"受媒体影响的人类乳头瘤病毒传播模型的建模与分析。","authors":"","doi":"10.1016/j.mbs.2024.109247","DOIUrl":null,"url":null,"abstract":"<div><p>The human papillomavirus (HPV) is threatening human health as it spreads globally in varying degrees. On the other hand, the speed and scope of information transmission continues to increase, as well as the significant increase in the number of HPV-related news reports, it has never been more important to explore the role of media news coverage in the spread and control of the virus. Using a decreasing factor that captures the impact of media on the actions of people, this paper develops a model that characterizes the dynamics of HPV transmission with media impact, vaccination and recovery. We obtain global stability of equilibrium points employing geometric method, and further yield effective methods to contain the HPV pandemic by sensitivity analysis. With the center manifold theory, we show that there is a forward bifurcation when <span><math><mrow><msub><mi>R</mi><mn>0</mn></msub><mo>=</mo><mn>1</mn></mrow></math></span>. Our study suggested that, besides controlling contact between infected and susceptible populations and improving effective vaccine coverage, a better intervention would be to strengthen media coverage. In addition, we demonstrated that contact rate and the effect of media coverage result in multiple epidemics of infection when certain conditions are met, implying that interventions need to be tailored to specific situations.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"375 ","pages":"Article 109247"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and analysis of a human papilloma virus transmission model with impact of media\",\"authors\":\"\",\"doi\":\"10.1016/j.mbs.2024.109247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The human papillomavirus (HPV) is threatening human health as it spreads globally in varying degrees. On the other hand, the speed and scope of information transmission continues to increase, as well as the significant increase in the number of HPV-related news reports, it has never been more important to explore the role of media news coverage in the spread and control of the virus. Using a decreasing factor that captures the impact of media on the actions of people, this paper develops a model that characterizes the dynamics of HPV transmission with media impact, vaccination and recovery. We obtain global stability of equilibrium points employing geometric method, and further yield effective methods to contain the HPV pandemic by sensitivity analysis. With the center manifold theory, we show that there is a forward bifurcation when <span><math><mrow><msub><mi>R</mi><mn>0</mn></msub><mo>=</mo><mn>1</mn></mrow></math></span>. Our study suggested that, besides controlling contact between infected and susceptible populations and improving effective vaccine coverage, a better intervention would be to strengthen media coverage. In addition, we demonstrated that contact rate and the effect of media coverage result in multiple epidemics of infection when certain conditions are met, implying that interventions need to be tailored to specific situations.</p></div>\",\"PeriodicalId\":51119,\"journal\":{\"name\":\"Mathematical Biosciences\",\"volume\":\"375 \",\"pages\":\"Article 109247\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002555642400107X\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002555642400107X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类乳头瘤病毒(HPV)在全球范围内不同程度的传播,威胁着人类的健康。另一方面,随着信息传播速度和范围的不断提高,以及与 HPV 相关的新闻报道数量的大幅增加,探讨媒体新闻报道在病毒传播和控制中的作用变得前所未有的重要。本文利用一个能捕捉媒体对人们行为影响的递减因子,建立了一个模型,描述了 HPV 传播与媒体影响、疫苗接种和恢复的动态关系。我们利用几何方法获得了平衡点的全局稳定性,并通过敏感性分析进一步得出了遏制人乳头瘤病毒大流行的有效方法。利用中心流形理论,我们证明了当 R0=1 时存在正向分叉。我们的研究表明,除了控制感染人群和易感人群之间的接触、提高疫苗的有效覆盖率外,更好的干预措施是加强媒体报道。此外,我们还证明了在满足特定条件时,接触率和媒体覆盖率的影响会导致多重感染流行,这意味着需要根据具体情况采取相应的干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling and analysis of a human papilloma virus transmission model with impact of media

The human papillomavirus (HPV) is threatening human health as it spreads globally in varying degrees. On the other hand, the speed and scope of information transmission continues to increase, as well as the significant increase in the number of HPV-related news reports, it has never been more important to explore the role of media news coverage in the spread and control of the virus. Using a decreasing factor that captures the impact of media on the actions of people, this paper develops a model that characterizes the dynamics of HPV transmission with media impact, vaccination and recovery. We obtain global stability of equilibrium points employing geometric method, and further yield effective methods to contain the HPV pandemic by sensitivity analysis. With the center manifold theory, we show that there is a forward bifurcation when R0=1. Our study suggested that, besides controlling contact between infected and susceptible populations and improving effective vaccine coverage, a better intervention would be to strengthen media coverage. In addition, we demonstrated that contact rate and the effect of media coverage result in multiple epidemics of infection when certain conditions are met, implying that interventions need to be tailored to specific situations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
期刊最新文献
Editorial Board Role of non-exponential reversal times in aggregation models of bacterial populations The effects of tritiated water on competitive outcomes of two Daphnia species in lakes: A reaction–diffusion tritium-taxis model A mathematical modeling study of the effectiveness of contact tracing in reducing the spread of infectious diseases with incubation period Exploring trade-offs in drug administration for cancer treatment: A multi-criteria optimisation approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1